Source code :: CalcDensTemp

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#!/usr/bin/env python 
# -*- coding: utf-8 -*-

"""
 Estimate electron temperature and ion concentration based on their the spectral lines intensity. 
 
 Ions intensity is descrimed by a very simple model with minimal number of parameters:
 Expectations:
  1) that line intesity is proportional to impurity density and fnction of the temperature
  2) ratio of lines of the different ionization states of the impuritie as 
    function of the temperature is polynome of order k (k = 1 now)
  3) shape of f(T_e) of the first ionozation stage is gaussian with width a and center T0
    (for k = 1  => all other are also gaussians)
  4) this model can not exactly estimate the temperature, only something which is 
    monotonous function of the T_E => caibration from the spitzer resistivity was necassary. 
  5) it is expected that during the shot is impurity density as constant as possible. 
  
  Advantages:
  simple model => robust
  most of the spectra are explained very well even by this simple model 

  
  
  Disadvantages:
  
   OI and NI can be observed in low temperatures a  deviation from model, f(T) if this
  ions don't have a gaussian shape, it radiates strongyl alte low temperatures and the the radiation
  is alomost constant over large range of temperatures. 

 In helium shots is probably a different physic or a week he lines mess estimate of the NI density. 
 NI radiation is significantly underestimated. 
 
 Autor :Tomas Odstrcil
 Date 12.12.2012


"""

import matplotlib 
matplotlib.rcParams['backend'] = 'Agg'
from numpy import *
import matplotlib.pyplot as plt

from numpy.linalg import norm
from scipy.linalg import inv,pinv,cholesky,solve_triangular
from scipy.stats.stats import pearsonr,hmean
from scipy.sparse import block_diag
from numpy.matlib import repmat
from time import time
from pygolem_lite.modules import save_adv,load_adv
from pygolem_lite import saveconst
import numexpr as ne
from scipy.optimize import fmin_bfgs


ion_names =  ['HI','OI','OII', 'OIII', 'HeI', 'CII', 'CIII', 'NI','NII', 'NIII','M1', 'MIV' ]
element_names = ['H','O','He','C','N','M1','MIV']

n_ions = len(ion_names)
n_elemets = len(element_names)
k = 2  #polynome order

ions_index = [[0], [1,2,3],  [4], [5,6], [7,8,9], [10],[11]]
single_ion = [0,2,5,6]
multi_ion  = [1,3,4]



M1 = matrix([1,])                                       #H   0
M2 = matrix([[1,-1,0],[0,1,-1],[1,0,-1],[1,0,0]])       #O   1
M3 = matrix([1,])                                       #He  2
M4 = matrix([[1,-1],[-1,1],[1,0]])                      #C   3
M5 = matrix([[1,-1,0],[0,1,-1],[1,0,-1],[0,1,0]])       #N   4
M6 = matrix([1,])                                       #M1  5
M7 = matrix([1,])                                       #MIV 6
M  = block_diag((M1,M2,M3,M4,M5,M6,M7))
M  = M.todense()

bound_inter_i =  [1,2,3,5,6,7,8,9]
bound_inter_j =  [1,2,3,6,7,9,10,11]

bound_inter = zeros(15, dtype = 'bool')
bound_inter[bound_inter_j] = True


M_limited = (M[:,bound_inter_i])[bound_inter_j,:]
iM = array(linalg.pinv(M))


def CalibrateTemperature(T,Terr):  #basend on coeffitients from CompareSpitzerResistivity.py
    nl_coeff = loadtxt('model_constants/nonlin_tranform_coeff.txt')

    a = nl_coeff[0]
    b = nl_coeff[1]
    c = nl_coeff[2]
    d = nl_coeff[3]
    
    def T2T_eV(T):
        T = copy(T)
        ind = where(T <=c*0.95)
        T[ind] = c*0.95+c*0.05*(1-exp((T[ind]-c*0.05)))

        ind = where(T>2.9)
        T_ = (tan((-T-c)/d)-b)/a
        T_[ind] = exp(-T[ind]+2.9)*(tan((-2.9-c)/d)-b)/a
        return T_

    
    T_ = T2T_eV(T)

    Terr_u = T2T_eV(T-Terr)-T_
    Terr_d = -T2T_eV(T+Terr)+T_

   
    return T_,Terr_u,Terr_d



def EstimateT(p,pE,coeff):
    
    pE = pE#+0.1   #because than can be too low values, nonstatistical errors
    n = size(p,0)
    m = size(p,1)

    I = ones(n)
    cutM = array(M[bound_inter_j,:])
    R = dot(cutM,log(p+1e-4).T)
    m = size(R,1)

    Re = sqrt(dot(cutM**2,((pE/(p+1e-5))**2).T))
    
    R-= outer(coeff[:,0], I)
    B = coeff[:,1]
    B = tile(B,(m,1)).T
    T = average(R/B, axis = 0, weights=(B/Re)**2)
    T = sum(B*R/Re**2, axis = 0)/sum((B/Re)**2,axis = 0)

  
    B *= T[newaxis,:]
    chi2 = norm((R-B)/Re)**2/(size(R)-size(T))
    print 'chi2 temp:',chi2
    
    return T



def plotTprofiles(T0, a, density,N, T,B, coeff,p,pE,i):

    density_model = ones((100,n_elemets))
    T_model = linspace(-3,3,100)
    N_model = vstack((ones(100),T_model)).T
    c2 = CalcIntensity(T_model,density_model,N_model,T0,a,B,coeff,ions_index[i])/e
    I  = CalcIntensity(T,density,N,T0,a,B,coeff,ions_index[i])
    Resid = (p[:,ions_index[i]]-I)/pE[:,ions_index[i]]
    ax = plt.subplot(1,1,1)
    r_tot,_ = pearsonr(ravel(p[:,ions_index[i]]), ravel(I))


    #max_Resid  je aby se zabránilo přetečení
    chi2 = norm(Resid)**2/(size(Resid))
    
    max_Resid = double(amax(abs(Resid)))
    Resid/= max_Resid
    Resid **= 2
    chi2_robust = max_Resid*sum(Resid/sqrt((1/max_Resid)**2 + Resid))/(size(Resid))
    
    colour = ['b', 'r','k', 'y']
    for k in range(len(ions_index[i])):
        x = -T
        y = squeeze(p[:,(ions_index[i])[k]]/exp(density[:,i]))
        y_err = squeeze(pE[:,(ions_index[i])[k]]/exp(density[:,i]))
        noisy = y_err > y*2
        errorbar(x[~noisy],y[~noisy],y_err[~noisy], fmt=colour[k]+'.',capsize = 0,linewidth = 0.1,markersize = 0.5)

        plt.plot(-T_model, c2[:,k], colour[k],label = ion_names[(ions_index[i])[k]])
    plt.xlabel('f(T) [-]')
    plt.ylabel('intensity [a.u.]')
    leg = plt.legend(loc='upper left', fancybox=True)
    leg.get_frame().set_alpha(0.7)
    plt.title(element_names[i])
    ax.text(-1.9,1,'$\\chi^2$ = %2.1f \n$\\chi^2$ robust = %2.1f \n$r$ =  %1.2f'
        % (chi2,chi2_robust,r_tot),horizontalalignment='left',verticalalignment='bottom')

    plt.ylim(0,1.5)
    plt.xlim(-2,1)
    #plt.show()
    plt.savefig('grafy_advance/_'+element_names[i]+' '+name+'.png')
    fig.clf()
    
        
	

from scipy.spatial.distance import cdist
iM = copy(iM.T)
def CalcIntensity(T,density,N,T0,a,B,coeff,index):
    
    density[density>100] = 100
    n = size(density,0)
    F = empty((n,15), dtype= 'double')
    
    F[:,bound_inter] = dot(N,coeff.T)
    T = repmat(T, n_elemets,1).T
  
    T -= T0
    T *= T
    T *= a
    T -= B
    T += density
    
 

    F[:,~bound_inter] = T

    I = exp(dot(F,iM[:,index])-1)
    
    return I


def EstimateDensity(p,pE,T,T0,a,B,coeff):
    
    n = size(p,0)
    #pE = pE+0.1   #because than can be too low values, nonstatistical errors
    N = vstack([T**j for j in range(k)]).T
    density = zeros((n,n_elemets))

    I  = CalcIntensity(T,density,N,T0,a,B,coeff,slice(0,12))
    I[I<1e-3] = 1e-3
    r  = log(p/I+1e-3)
    re = pE/(p+1e-3)

    
    for i,ind in enumerate(ions_index):
        density[:,i] = average(r[:,ind], axis = 1, weights=re[:,ind])

    I = CalcIntensity(T,density,N,T0,a,B,coeff,slice(0,12))
    chi2 = norm((p-I)/pE)**2/(size(p)-size(density))

    #for i in range(n_ions):
        #plotTprofiles(T0, a, density,N, T, B,coeff,p,pE,i)
    print 'chi2 dens:',chi2
    return density
    
    




def CalcDensTemp():

    C = loadtxt('model_constants/C.txt') #temperature polynome coeffitients
    A = loadtxt('model_constants/A.txt') #temperature profile gaussian widths
    T0= loadtxt('model_constants/T0.txt')#temperature profile gaussian center
    B = loadtxt('model_constants/B.txt') #temperature profile gaussian height
	
    #try:
    tvec,proj_dict = load_adv('./data/projection')
    p  = proj_dict
    pE = proj_dict.data_err

    #p  = load('./data/projection.npy')
    #pE = load('./data/projectionError.npy')
    #tvec= load('./data/tvec.npy')
    #except:
	#print 'Projection was not found'
	#return
        
  
    s = sum(p[:,bound_inter_i],axis = 1) > 0.01 #remove dark and very weak spectra

    shots_part = linspace(0,1,size(p,0), endpoint = False)
    p = p[s,:]
    pE = pE[s,:]
    tvec  = tvec[s] 
    shots_part = shots_part[s]
    n = size(p,0)
    
    if n == 0:
	return
    
    dp = zeros((n+1,n_ions))
    dp[1:-1,:] = abs(diff(p, axis = 0))
    dp_ = zeros_like(pE)
    for i in range(n_ions):
	x = arange(n)+0.5
	xp = arange(n+1)
	dp_[:,i] = interp(x,xp, dp[:,i])
	
	
    pE += 0.1*dp_  #error due to fast changes during integration
    pE[pE <= 1e-3] = 1e-3  #due to non-physically small errors

  
   



    n_infty = sum(pE == infty)


    def f_optim(x):
        #t = time()
	T  = x[:n]# temperature
	density = reshape(x[-n*n_elemets:],(n,n_elemets))	#logarithm dems
	
	N = vstack([T**j for j in range(k)]).T
        #t = time()
	I = CalcIntensity(T,density,N,T0,A,B,C,slice(0,12))
        #print time()-t
        size(pE)
        doF = (size(p)-size(x)-n_infty)

        Resid = ne.evaluate('((p-I)/(pE+1e-5))**2')
        chi2 = ne.evaluate('sum(Resid/sqrt(1 + Resid))')/doF
      

	b  = norm(T[T > 4])
	b += norm(T[T < -3])

	d = diff(density,1, axis = 0)  #BUG je to OK? 
	d[0,:]/=2 #allow a bigger changes at the start and end of the discharge where is the model not valid
	d[-1,:]/=2
     
	d = norm(d)/len(d)#+norm(exp(density[:,0]))+norm(exp(density[:,-1]))
	Td = diff(T,2)
	Td[Td > 0] = 0
	Td = norm(Td)
	spars = norm(ravel(exp(density)))  #suppres extremly hight densities

        #print time()-t
        #print chi2 +spars*.1+lam*d*.6+Td/10+b
	return chi2 +spars*.1+lam*d*.6+Td/10+b


    
    #make a LSQ based estimates
    temp0 = EstimateT(p,pE,C)
    dens0 = EstimateDensity(p,pE,temp0,T0,A,B,C)
 
    x0 = hstack((temp0, ravel(dens0)))

 
    lam = 10
    print 'fmin_bfgs'
    y= fmin_bfgs(f_optim, x0, gtol=1e-1,maxiter=1e6,disp=False)
  
    #print y
    #exit()
    #print 'fmin_bfgs finish'

    T  = y[:n]# temperature
    N = vstack([T**j for j in range(k)]).T
    density = reshape(y[-n*n_elemets:],(n,n_elemets))	#logarithm density
    I = CalcIntensity(T,density,N,T0,A,B,C,range(12))
 
  
    
    #estimate statistical errors: 
    def RetrofitFunction(x):
	Temp  = x[:n]# temperature
	Dens = reshape(x[n:],(n,n_elemets))#logarithm density
	I = CalcIntensity(Temp,Dens,N,T0,A,B,C,range(12))
	return ravel(I)

    def CalcJacobi(x0,fun): 
	n2 = size(p)
	dx = 1e-6
	J = zeros((len(x0),n2), dtype = 'float32')
	for i in range(len(x0)):
	    xl,xr = copy(x0),copy(x0)
	    xl[i]-= dx
	    xr[i]+= dx
	    J[i,:] = (fun(xl)-fun(xr))/(2*dx)
	    
	    
	return J



    J = CalcJacobi(y,RetrofitFunction)
 
    chi2 = array([1,3,3,3,1,3,3,13,13,13,10,1])  #BUG must by set by hand
    correctedPE = copy(pE)
    correctedPE *= sqrt(chi2)
 
    
    
    err =  ravel(correctedPE)
    J/= err
    JJ= dot(J,J.T)  

    JJ.flat[::size(J,0)+1]+= 1e-3  #regularization of the sometimes singular matrix
        
    L = cholesky(JJ, lower=False,overwrite_a=True) #vytvoří to asi dolní trojúhelníkovu matici rozkladu
   
    #invert L    
    I = identity(L.shape[0])
    iL= solve_triangular(L,I , trans=0, lower=True, overwrite_b=True)

    iL = absolute(iL, out = iL)
    iL **= 2
    err = sqrt(sum(iL, 0))
   
    energy_constants=load('./data/energy_constants.npy')
    p_calib = p*energy_constants    
    P_total = sum(p_calib,1)
    
    temp_err = err[:n]
    dens_err = reshape(err[n:],(n,n_elemets))
    T_calib,T_calib_err_u,T_calib_err_d = CalibrateTemperature(T,temp_err)

    ind = argsort(P_total)[-2:]
    max_dens = average(density[ind,:],axis=0, weights=dens_err[ind,:])
    max_dens = exp(max_dens)

    for d,name in zip(max_dens, element_names):
	print 'ion %2s concentration = %1.2f'%(name,d)
	saveconst('./HistoricalAnalysis/'+name,d)
	
    flt_temp = average(T_calib[ind],weights=1/T_calib_err_d[ind]**2)

    print 'flattop temperatute %1.1f'%flt_temp
    saveconst('./HistoricalAnalysis/temperature',flt_temp)

    

    
    chi2 = zeros(n_elemets)
    for i in range(n_elemets):
	I = CalcIntensity(T,density,N,T0,A,B,C,ions_index[i])

	Resid = (p[:,ions_index[i]]-I)/pE[:,ions_index[i]]
	max_Resid = double(amax(abs(Resid)))
	Resid/= max_Resid
	Resid **= 2
	chi2[i] = max_Resid*sum(Resid/sqrt((1/max_Resid)**2 + Resid))/(size(Resid)-n+1)
    
    
    save_adv('./data/density', tvec,density,data_err=dens_err, tvec_err=1e-3)
    save_adv('./data/temperature', tvec,T_calib, data_err=[T_calib_err_d,T_calib_err_u],  tvec_err=1e-3)
    save_adv('./data/TempDensChi2', arange(n_elemets),chi2)





    #Plot basic plot
    
    try:
	shots = load('shots.npy')
	shot_index = where(abs(floor(shots)- shot_number) < 0.5)[0]
    except:
	pass
   
    fig = plt.figure(num=None, figsize=(8, 7), dpi=80, facecolor='w', edgecolor='k')
    ax = fig.add_subplot(311)

    I = CalcIntensity(T,density,N,T0,A,B,C,range(12))
    plt.errorbar(arange(size(p)), ravel(p.T), yerr=ravel(pE.T))
    plt.plot(ravel(I.T)) 

    
    chi2doF = norm((p-I)/pE)**2/size(p-size(y))
    ax.set_title('Spectral data retrofit')
    

    T_est = EstimateT(p,pE,C)
    d_est = EstimateDensity(p,pE,T_est,T0,A,B,C)
    I = CalcIntensity(T_est ,d_est,N,T0,A,B,C,range(12))
    plt.plot(ravel(I.T), 'r:')
    ax.axis('tight')
    ax.set_ylabel('intensity')
    ax.set_ylim(0,amax(p)*1.2)
    ax.text(2/2,amax(p)*0.5,'$\chi^2$/doF = %.2f'%chi2doF,horizontalalignment='left',verticalalignment='bottom')
    for i,name in enumerate(ion_names):
	ax.text(i*n+1,amax(p)*1.05,name,horizontalalignment='left',verticalalignment='bottom')
    
    
    ax = fig.add_subplot(312)  
    plt.errorbar(tvec*1e3, -T, temp_err,markersize = 0.5)
    plt.plot(tvec*1e3, -(T_est[:n]),':')
    try:	
	temperature_full  = load('temperature.npy')	
	plt.plot(shots[shot_index]-shot_number, -temperature_full[shot_index], '--')
    except:
	pass
    ax.set_ylim(-4,3)
    ax.set_ylabel('pseudo temperature')
   
    ax = fig.add_subplot(313)  
    plt.semilogy( tvec*1e3,exp(density))
    try:
	density_full = load('density.npy')
	density_full+= B[:,newaxis]
	plt.semilogy(shots[shot_index]-shot_number,exp(density_full[:,shot_index].T), '--')
    except:
	pass
    #ax.axis('tight')

    ax.set_ylim(1e-3,10)
    ax.set_ylabel('Density')
    ax.set_xlabel('t [ms]')

    fig.savefig('./graphs/proj_retrofit.png')
    fig.clf()
    return 

    
    

def plotDensTemp():
    
    tvec,density = load_adv('./data/density')
    dens_err = density.data_err
  
    
    tvec,T = load_adv('./data/temperature')
    temp_err = T.data_err
    temp_err = [temp_err[:,0] ,temp_err[:,1]]
    _,chi2doF = load_adv('./data/TempDensChi2')




    class MyFormatter(plt.ScalarFormatter): 
	def __call__(self, x, pos=None): 
	    if pos==0: 
		return '' 
	    else: return plt.ScalarFormatter.__call__(self, x, pos)  
	


   
    fig = plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
    plt.subplots_adjust(hspace=0, wspace = 0)
    
    for i in range(0,n_elemets):
	ax = fig.add_subplot(n_elemets,1,i+1)
	if i == 0: 
	    ax.set_title('Relative ions concentration')
	
	ax.xaxis.set_major_formatter( plt.NullFormatter() )
	ax.yaxis.set_major_formatter( MyFormatter() )
	

	y = exp(density[:,i])
	y_err_up   =  expm1( dens_err[:,i])*y
	y_err_down = -expm1(-dens_err[:,i])*y
	y_med = average(y, weights=abs(y_err_up))
	y_err_med = (hmean(abs(y-y_med)+1e-3)+hmean(abs(y_err_up)))/2
	plt.errorbar(tvec*1e3,y,yerr=[y_err_down,y_err_up],markersize = 0.5, label = element_names[i])
	ax.yaxis.grid(True)

	ax.text(.05,.2,'$\\chi^2/doF = %2.1f$ \n $n = %1.2f\pm%1.1g$'% (chi2doF[i],y_med,y_err_med),horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes)
	ax.set_ylim(0,max(0.1,amax(y))*1.5)

	leg = plt.legend(loc='upper left', fancybox=True)
	leg.get_frame().set_alpha(0.5)


    ax.xaxis.set_major_formatter( plt.ScalarFormatter() )

  
    ax.set_xlabel('t [ms]')
    fig.savefig('./graphs/density.png',bbox_inches='tight')
    fig.clf()



    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    ax = fig.add_subplot(111)
    ax.set_title('Estimated temperature')
    plt.errorbar(tvec*1e3, T, yerr=temp_err,markersize = 0.5)
    ax.set_ylabel('$T_e$ [eV]')
    ax.set_xlabel('t [ms]')
    ax.set_ylim(0,80)
    ax.yaxis.grid(True)
    fig.savefig('./graphs/temperature.png',bbox_inches='tight')
    plt.close()
    
    
    try:
	fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
	ax = fig.add_subplot(111)
	data = load('./electronTemperatures/'+str(shot_number)+'/electron_temperature.npz')
	temp = data['data']*data['scale']
	
	tvec_spitz= linspace(data['t_start'], data['t_end'], len(temp))
	try:
	    plasma_start = loadtxt('./electronTemperatures/'+str(shot_number)+'/PlasmaStart')
	    plasma_end =   loadtxt('./electronTemperatures/'+str(shot_number)+'/PlasmaEnd')
	except:		
	    pass
	    #plasma_start =  amin(tvec[isfinite(temp)])
	    #plasma_end   =  amax(tvec[isfinite(temp)])
	if shot_number > 9300:
	    temp*= 2
	    
	else:
	    tvec_spitz/= 1e3
	    plasma_start-= 0.5
	    plasma_start/= 1000
	    plasma_end/=1000
	
	ax.set_title('Spitzer temperature')
	plt.plot(tvec_spitz*1e3, temp)

	ax.set_ylabel('$T_e$ [eV]')
	ax.set_xlabel('t [ms]')
	ax.set_ylim(0,80)
	ax.set_xlim(plasma_start*1000,plasma_end*1000)

	fig.savefig('./graphs/temperature'+str(shot_number)+'_spitz.png',bbox_inches='tight')
	plt.close()
	print 'Te plotted'
    except:
	print 'no electron temperature'
	pass
    
    

Navigation