1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Algorithm for integrated data analyze of the visible light signal from GOLEM tokamak.
Many different diagnotics with different wavelength resolution, time resolution, time shift error,
and signal error is availible on the tokamak.This algirithm puts them together and finds simplest
solution which corespondes to the measured signal. Usually most of the wavelength information is provided
by spectrometer and the higth freqency part is provided by fast cameras and photodiodes.
The problem is solved as least squares fit of the data by nonparametrical model sim maximal simplisity.
Autor: Tomas Odstrcil
date:12.12.2012
"""
#TODO jak jsou oÅ¡etÅená pÅepálená data z foťáku?? dát tam inf???
from numpy import *
from matplotlib.pyplot import *
from SpectrometerControl import *
from scikits.sparse.cholmod import cholesky, analyze, cholesky_AAt,CholmodError
from scipy.signal import fftconvolve,gaussian
from numpy import linalg
import time
from scipy import sparse
from numpy.matlib import repmat
from scipy.sparse import *
from scipy.linalg import norm, inv,qr,pinv
from pygolem_lite.modules import save_adv,load_adv
from CalcIonProjections import Resample,upsample_smooth,GapsFilling
import numexpr as ne
names = ('HI','OI','OII', 'OIII', 'HeI', 'CII', 'CIII', 'NI','NII', 'NIII','Mystery1', 'CIV+NIV+OIV' )
styles = ('b-','r-','r--', 'r-.' , 'g-' , 'k--', 'k-.' , 'y-','y--', 'y-.' , 'c-' , 'm:' )
def WeightedMean(values,error,correlMatrix = None): #implicit expectation of the gaussin error distribution
n = len(values)
if correlMatrix == None:
correlMatrix = np.identity(n)
covarMatrix = (diag(error)*matrix(correlMatrix**2)*diag(error))
icovarMatrix = linalg.pinv(covarMatrix)
s = 1/sum(icovarMatrix)
m = s*sum(values*icovarMatrix)
chi2 = double((values-m)*((values-m)*icovarMatrix).T)
s*= chi2/(n-1)
return m,sqrt(s)
def WeightedMeanVec(vectors,vec_errors,correlMatrixes): #implicit expectation of the gaussin error distribution
n = len(vectors[0])
#http://en.wikipedia.org/wiki/Weighted_mean#Vector-valued_estimates
s = zeros((n,n))
x = zeros((n,1))
for (cor,err,vec) in zip(correlMatrixes,vec_errors,vectors):
cov = diag(err)*matrix(cor**2)*diag(err)
icov = linalg.pinv(cov)
s += icov
x += dot(icov,vec).T
s = linalg.pinv(s)
x = dot(s,x).T
chi2 = 0
for (cor,err,vec) in zip(correlMatrixes,vec_errors,vectors):
cov = diag(err)*matrix(cor**2)*diag(err)
icov = linalg.pinv(cov)
chi2 += double((vec-x)*((vec-x)*icov).T)
s*= chi2/len(vectors)
return squeeze(x),sqrt(diag(s))
def IntegLightAnalyz(wavelength,plasma_start,plasma_end,SpectrometerData,PhotodiodesData, upsample = 10):
print 'IDA start'
wavelength,components = load_adv('./data/components') #the most critical part, weeks of my work
(spec_tvec,spec_tvecError,SpectrSensitiv,projection,projectionError) = SpectrometerData
(photoData,photoError,correlList,photoTvec,photoTvecPrecis,photoFilter,photoSensitivity,photoLabel) = PhotodiodesData
#photoFilter - musà být vÅ¡echny stejnÄ normované aby se nepokazily vzájemé citlivosti
SpectrSensitiv = interp(wavelength, SpectrSensitiv[:,0], SpectrSensitiv[:,1])
for i,(pfilter,rsPhotodiod) in enumerate(zip(photoFilter,photoSensitivity )):
photoFilter[i] = interp(wavelength,pfilter[:,0],pfilter[:,1],left=0,right = 0)
photoSensitivity[i]=interp(wavelength,rsPhotodiod[:,0],rsPhotodiod[:,1],left=0, right=0)
n_features = size(components,1)
n_components = size(components,0)
n_measurement = size(projection,0)
n_photodiodes = len(photoData)
dt = mean(diff(spec_tvec))/upsample
#this matrix make a projection of the spectrometer data to the photodiodes data
FilterProjMatrix = empty((n_components, n_photodiodes))
for i,(pfilter,rsPhotodiod) in enumerate(zip(photoFilter,photoSensitivity)):
FilterProjMatrix[:,i] = dot(components,1/SpectrSensitiv*pfilter*rsPhotodiod)
photoData_down = list()
photoError_down = list()
photoTvec_down = list()
#downsample data from photodiods
for i,(pdata,perror,ptvec) in enumerate(zip(photoData,photoError,photoTvec)):
#nanind = array(~isfinite(pdata))
if not all(isfinite(pdata)):
perror,_ = GapsFilling(perror)
pdata,_ = GapsFilling(pdata)
t_min = amin(spec_tvec)
t_max = amax(spec_tvec+dt*(upsample-1))
minerr= amin(perror)
#plot(perror)
#savefig('err%d.png'%i)
#clf()
tvec,data = Resample(ptvec, pdata,n_measurement*upsample,t_min=t_min,t_max=t_max)
tvec,err = Resample(ptvec,perror,n_measurement*upsample,
t_min=t_min,t_max=t_max,left=minerr,right=minerr)
#plot(ptvec,nanind)
#plot(ptvec,pdata)
#plot(tvec,data)
#savefig('data'+str(i)+'.png')
#clf()
photoTvec_down.append(tvec)
photoData_down.append(data)
photoError_down.append(err)
##_,nanind = Resample(ptvec, nanind,n_measurement*upsample,t_min=t_min,t_max=t_max)
#plot(photoTvec[i],nanind)
#nanind = nanind > 0.3
#plot(photoTvec[i],nanind)
#xlim(plasma_start,plasma_end)
#savefig('nanind.pdf')
#(photoError[i])[nanind] = 1e6 #big number insted of infinity
#upsample spectrometer data
upsampled_proj = empty((n_components, upsample*n_measurement))
for i, proj in enumerate(projection.T ):
upsampled_proj[i,:],_ = upsample_smooth(proj,15,1,sampleInteg = True,upsample = upsample)
#calculate expected photodiods signal from spectrometer
PhotodFromSpec = dot(FilterProjMatrix.T,upsampled_proj )
PhotodFromSpec2 = dot(FilterProjMatrix.T,projection.T )
#calculate the mutual renormalization of the intensity and time shift of the time axis if the diagnostics
shift = zeros(n_photodiodes)
amplitude = zeros(n_photodiodes) #TODO mÄly by být taky vÅ¡echny stejné, až to bude dobÅe zkalibrované
for i, (photod,spect) in enumerate(zip(photoData_down,PhotodFromSpec)):
convolution = fftconvolve(photod,spect[::-1], mode = 'same')
shift[i] = len(convolution)/2-argmax(convolution)
amplitude[i] = sum(spect)/sum(photod)
tshift = shift*dt
#estimate correction of the spectrometer timeaxis
correlList.insert(0,1) # spectrometer
M = sparse.block_diag(correlList)
correlMatrix = M.todense()
spec_tshift,spec_tshift_err = WeightedMean(np.hstack((0,tshift)),
np.hstack((spec_tvecError,photoTvecPrecis)),
correlMatrix=correlMatrix)
spec_tvec += -spec_tshift+dt*upsample/2 #korekce subixelové chyby
tshift -= spec_tshift
#correstion of the timeaaxis of the photodiods
tshift,tshift_err = WeightedMeanVec((zeros(n_photodiodes),tshift),
(photoTvecPrecis,spec_tshift_err*ones(n_photodiodes)),
(correlMatrix[1:,1:],correlMatrix[1:,1:]))
tshift = array(tshift,ndmin=1)
tshift_err = array(tshift_err,ndmin=1)
#make a coresponding shift of the photodiod signal
for i, (shift,shift_err,photod,photodE,photoT,spect) \
in enumerate(zip(tshift,tshift_err,photoData_down,photoError_down,photoTvec_down,PhotodFromSpec)):
err_shift = hypot(shift_err,spec_tshift)
photoTvec[i] += shift
photoData[i] *= amplitude[i]
shift += spec_tshift
photod[:] = interp(photoT,photoT+shift,photod )*amplitude[i]
photodE[:] = interp(photoT,photoT+shift,photodE)*amplitude[i]
photodE[1:]+= err_shift*abs(diff(photodE))/dt #error in x variable
photoT -= spec_tshift
#plot(photoData[i])
#plot(spect)
#savefig('_'+str(i)+'.png')
#clf()
#errorbar(photoT,photod,photodE)
#title(photoLabel[i])
#plot(spec_tvec,PhotodFromSpec2[i,:])
#axvline(x = plasma_start,c = 'r')
#axvline(x = plasma_end,c = 'r')
#savefig(str(i)+'.png')
#clf()
# x is solution
n_b = n_components*n_measurement
n_x = n_b*upsample
x = zeros(n_x)
# b are measured data
b1 = reshape(projection, (-1,1),order='F') #data from spectrometer
b2 = array(photoData_down,copy=False) #data from photodiode
b2 = reshape(b2, (-1,1),order='C')
b = squeeze(np.vstack((b1,b2)))
#e is expected error in data_file
e1 = reshape( projectionError, (-1,1), order='F') #error from spectrometer
e2 = array(photoError_down,copy=False) #error from photodiode
e2 = reshape( e2, (-1,1),order='C')
e = squeeze(np.vstack((e1,e2)))
e+= 1e-4 #nonzeroes errors
#The vogel matrix
ReductMatrix = kron(eye(n_b,n_b),ones((1,upsample))/upsample,format='csr')
FiltMatrix = kron(FilterProjMatrix.T,
identity(n_measurement*upsample,format='dia'),format='csr')
T = vstack((ReductMatrix, FiltMatrix))
iE = diags(1/e, 0)
T = iE*T
b = iE*b
tvec = photoTvec_down[0]
#Smoothing matrix
interv_noplasma = (tvec< plasma_start)+(tvec> plasma_end)
interv_noplasma = squeeze(repmat(interv_noplasma,1,n_components))
diag_data = ones((2,n_x))
diag_data[1,:] *= -1
diag_data[1,interv_noplasma] = 0
std = sum(~interv_noplasma)/50
gauss_win = gaussian(std*3,std)
gauss_win/= sum(gauss_win)
diag_data[1,:] = fftconvolve(diag_data[1,:],gauss_win,mode='same')
diag_data[1,::(n_measurement*upsample)] = 0
D = spdiags(diag_data, (0,1), n_x, n_x,format='csr')
D = D.T*D
DD = D.T*D
TT = T.T*T
W = ones(n_x) #weight matrix
factor = analyze(TT+DD)
for j in range(5):
W = D.T*sparse.spdiags(W,0, n_x,n_x)*D
lam = 1e4 #initial guess, just estimated "by eye"
for i in range(5):
factor.cholesky_inplace(TT +lam*W)
g = squeeze(factor(T.T*b))
chi2 = norm(T*g-b)**2/len(b)
print lam, chi2
if chi2 < 1.3: #very simple root finder
lam*= 2
else:
break
#elif chi2 < 1:
#lam*= 3
#else:
#break
g_tmp = copy(g)
g_tmp[g_tmp < 0.001] = 0.001 # remove negative points (result must be positive)
W = mean(g_tmp)/(g_tmp) # new weight matrix
f = T*g
resid = f-b
chi2 = norm(resid)**2/len(b)
print 'chi2',chi2
E = diags(e, 0)
g = reshape(g, (-1,n_components),order='F')
save_adv('./data/IDA_ions_projections',tvec,g )
#exit()
#plot results
fig = figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k')
ax = fig.add_subplot(111)
for i in range(n_components):
plot(tvec*1e3,g[:,i], styles[i], label=names[i])
ax.text(0.9,0.9,'$\\chi^2/doF = %2.1f$'%chi2,horizontalalignment='right',
verticalalignment='bottom',transform=ax.transAxes,backgroundcolor='w')
leg = legend(loc='upper left', fancybox=True)
leg.get_frame().set_alpha(0.7)
axvline(x = plasma_start*1e3,ls = '-.',c = 'g',)
axvline(x = plasma_end*1e3 ,ls = '-.',c = 'g',)
ax.set_xlabel('t [ms]')
ax.set_ylabel('relative intensity [-]')
ax.axis('tight')
ax.set_xlim(plasma_start*1e3-1,plasma_end*1e3+1)
fig.savefig('./graphs/IDA_ions_projections.png',bbox_inches='tight')
fig.clf()
#plot retrofit
retroSpec = (E*f)[:n_measurement*n_components]
retroSpec = reshape(retroSpec, (n_components,-1),order='C')
chi2 = norm(resid[:n_b])**2/n_b
space = 0.1
ax = fig.add_subplot(111)
for i in range(n_components):
plot(spec_tvec*1e3,retroSpec[i,:]+i*space, styles[i], label=names[i])
ax.text(0.9,0.9,'$\\chi^2/doF = %2.1f$'%chi2,horizontalalignment='right',
verticalalignment='bottom',transform=ax.transAxes,backgroundcolor='w')
ax.set_xlabel('t [ms]')
ax.set_ylabel('shift+intensity [a.u.]')
leg = legend(loc='upper left', fancybox=True)
leg.get_frame().set_alpha(0.7)
for i in range(n_components):
errorbar(spec_tvec*1e3,projection[:,i]+i*space,
yerr=projectionError[:,i],fmt=styles[i][0]+'.')#intensity with errorbars
ax.axis('tight')
ax.set_xlim(plasma_start*1e3-1,plasma_end*1e3+1)
fig.savefig('./graphs/spectrometer_retrofit.png',bbox_inches='tight')
fig.clf()
retroDiods = (E*f)
cm = get_cmap('gist_rainbow')
color = (cm(i/(1.+n_photodiodes)) for i in range(n_photodiodes+1))
ax = fig.add_subplot(111)
chi2 = norm(resid[n_b:])**2/(len(b)-n_b)
ymax = 0
index = n_measurement*n_components
for (ptvec,pdata,perr,ptvec_full,pdata_full,lab,pc) in zip(photoTvec_down,photoData_down,photoError_down,photoTvec,photoData,photoLabel,color):
plot(ptvec_full*1e3,pdata_full, color=pc, linestyle='-')
fill(np.concatenate([ptvec*1e3, ptvec[::-1]*1e3]), \
np.concatenate([pdata - perr,(pdata + perr)[::-1]]), \
alpha=.4, fc=pc, ec='None')
ymax = amax(pdata) if amax(pdata) > ymax else ymax
plot(ptvec*1e3,retroDiods[index:index+len(pdata)]+index/100.,'--', color=pc,label=lab)
index+= len(pdata)
#fig.savefig('./graphs/photodiodes_retrofit'+str(index)+'.png',bbox_inches='tight')
ax.text(0.9,0.9,'$\\chi^2/doF = %2.1f$'%chi2,horizontalalignment='right',
verticalalignment='bottom',transform=ax.transAxes,backgroundcolor='w')
leg = legend(loc='upper left', fancybox=True)
leg.get_frame().set_alpha(0.7)
ax.set_xlim(plasma_start*1e3-1,plasma_end*1e3+1)
ax.set_ylim(-ymax/20,ymax*1.1)
ax.set_xlabel('t [ms]')
ax.set_ylabel('intensity [a.u.]')
fig.savefig('./graphs/photodiodes_retrofit.png',bbox_inches='tight')
fig.clf()
#exit()
|