1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818 | #!/usr/bin/python2
# -*- coding: utf-8 -*-
""" CREATED: 7/2012
AUTHOR: MICHAL ODSTRÄIL
"""
from numpy import *
from pygolem_lite.config import *
from pygolem_lite.modules import *
from pygolem_lite.utilities import *
from pygolem_lite import *
from matplotlib.pyplot import *
from scipy.optimize import leastsq
import time, datetime, re
from scipy.sparse import spdiags, eye
from scipy.sparse.linalg import spsolve, splu
from scipy.signal import medfilt, fftconvolve, convolve
from scipy.stats.mstats import mquantiles
print "------------basicdiagn --------"
CdFieldTrigger = loadconst("Tcd_aktual") * 1e-6 + TororoidalMagneticFieldTrigger # [s]
BdFieldTrigger = loadconst('Tbd_aktual') * 1e-6 + TororoidalMagneticFieldTrigger # [s]
StFieldTrigger = loadconst('Tst_aktual') * 1e-6 + TororoidalMagneticFieldTrigger # [s]
saveconst('Tb', TororoidalMagneticFieldTrigger) # save in SI units
saveconst('Tbd', BdFieldTrigger) # save in SI units
saveconst('Tcd', CdFieldTrigger) # save in SI units
saveconst('Tst', StFieldTrigger) # save in SI units
BVoltage = loadconst('Ub_limit') # [V]
CdVoltage = loadconst('Ucd_limit') # [V]
BdVoltage = loadconst('Ubd_limit') # [V]
StVoltage = loadconst('Ust_limit') # [V]
if BdVoltage < 10:
BdFieldTrigger = nan
if CdVoltage == 0:
CdFieldTrigger = nan
if StFieldTrigger < 10:
StFieldTrigger = nan
print "CdFieldTrigger", CdFieldTrigger, "BdFieldTrigger", BdFieldTrigger, "StFieldTrigger", StFieldTrigger
print "BVoltage", BVoltage, "CdVoltage", CdVoltage, 'BdVoltage', BdVoltage, "StVoltage", StVoltage
try:
# get time vector
S = Shot()
tvec, tmp = S['any', 'btor']
shot = S.shot_num
### data damaged by triggers !!!! do not change !!!
ind_wrong = zeros(len(tvec), dtype = bool)
###ind_wrong |= abs( CdFieldTrigger - tvec) < 1e-4 # [s]
ind_wrong |= abs(TororoidalMagneticFieldTrigger - tvec + 0.5e-4 ) < 5e-4 # [s]
ind_wrong |= abs(BdFieldTrigger - tvec + 0.5e-4) < 0.5e-4 # [s]
ind_wrong |= abs(StFieldTrigger - tvec + 0.5e-4) < 0.5e-4 # [s]
dt = mean(diff(tvec)) # time step
except Exception, e:
print "Basicdiagn failure: ", e
params = []
for i in str(S['wwwcomment']).split("="):
try:
if re.match( "\d+.*", i):
i = re.sub( "(\ *[\d\,\.]+).*", r"\1", i)
i = re.sub(",", ".", i)
params.append( float(i) )
print "parametr", float(i) , "loaded"
except Exception, e:
print "Error in loading data from comment", str(e)
for i in range(len(params)):
saveconst('param_'+str(i+1), params[i]) # save in SI units
print "===================params", params
def save_config():
names = [
'ToroidalMagneticFieldCoilInductance',
'TororoidalMagneticFieldCapacitor',
'BreakDownElectricFieldCapacitor',
'CurrentDriveElectricFieldCapacitor',
'StabilizationCapacitor',
'Zeff'
]
for i in names:
exec('saveconst("'+i+'", '+i+')')
def getDate():
s = cat( "date")
#nicely formated date
shot_date = datetime.date( 2000 + int(s[4:6]), int(s[2:4]), int(s[:2]) )
s = cat( "starttime")
shot_time = datetime.time( int(s[0:2]), int(s[2:4]), int(s[4:6]) )
save('shot_date', shot_date)
save('shot_time', shot_time)
def getBtoroidal():
tvec, dBt = S['any', 'btor'] # mag field derivative
#mBt = mean(dBt)
min_time = max(nanmin([TororoidalMagneticFieldTrigger, BdFieldTrigger, CdFieldTrigger, StFieldTrigger])-1e-4 , 2e-3)
mBt = mean(dBt[tvec < min_time] )
sBt = std(dBt[tvec < min_time] )
dBt -= mBt # remove bias
Bt = cumsum(dBt) * dt * Bt_calibration # integrate
ReversedB = mean(Bt) < 0
saveconst("ReversedB", ReversedB)
Bt = -Bt if ReversedB else Bt
BtMax = amax(Bt) # max
BtMean = mean(Bt) # mean
saveconst('BtMax', BtMax, fmt="%.3f" )
#saveconst('BtMean', BtMean)
save_adv('Btoroidal', tvec, Bt)
save_adv('dBdt_toroidal', tvec, dBt)
saveconst('noise_level', sBt)
return Bt, dBt, BtMax, BtMean
def getUloop():
tvec, Uloop = S['any', 'uloop']
#m_Uloop = mean(Uloop)
Uloop *= UloopCalibration
ind_zero = (tvec < TororoidalMagneticFieldTrigger + 1e-4)
Uloop[ind_zero] = 0 # remove noise from tyristors
ReversedCD = mean(Uloop) < 0
saveconst("ReversedCD", ReversedCD)
Uloop = -Uloop if ReversedCD else Uloop
#ind_wrong = abs(TororoidalMagneticFieldTrigger-tvec) < 1e-4 # [s]
#Uloop[ind_wrong] = median(Uloop[ind_wrong] ) #remove noise from toroidal field trigger
#Uloop[ind_wrong] = 0 # medfilt(Uloop, 51)[ind_wrong] # remove signal damaged by tyristors
#plot(Uloop)
#show()
#ind_bias = [(tvec > TororoidalMagneticFieldTrigger) & ( tvec < nanmin([CdFieldTrigger, StFieldTrigger])) | (abs(tvec - TororoidalMagneticFieldTrigger) < 1e-4 ) ]
#Uloop_bias = median(Uloop[ind_bias])
#Uloop -= Uloop_bias
#plot(tvec, Uloop)
#plot(tvec[ind_bias], Uloop[ind_bias])
#show()
#Uloop = medfilt(Uloop, 5) # odstranit ?? nicim ten osklivy sum v datech !!!
Uloop[ind_zero] = 0 # remove noise from tyristors
UloopMax = mquantiles(Uloop,0.99)[0]
#UloopMean = sum(cumsum(abs(Uloop))) / len(Uloop) ** 2 # used for detection of
UloopMean = mean(abs(Uloop))
#exit()
saveconst('UloopMax', UloopMax, fmt="%.3f" )
save_adv('Uloop', tvec, Uloop)
return Uloop, UloopMax, UloopMean, ReversedCD
def getIrogowski(ReversedCD):
tvec, dIrog = S['any', 'irog']
#dIrog[abs(tvec - TororoidalMagneticFieldTrigger) < 1e-4 ] = 0 # cut off triggers
if ReversedCD:
dIrog *= -1
Ibias = mean(dIrog[tvec < max(nanmin([TororoidalMagneticFieldTrigger, BdFieldTrigger, CdFieldTrigger, StFieldTrigger])-1e-4 , 2e-3)] )
dIrog[ind_wrong & (tvec < nanmin([CdFieldTrigger, 40e-3])) ]=0
dIrog -= Ibias
Irog = cumsum(dIrog) * dt
Irog *= RogowskiCalibration
#Irog[tvec < nanmin([CdFieldTrigger, BdFieldTrigger])] = 0 # remove noise
#plot(tvec, dIrog/amax(dIrog))
#plot(tvec, convolve(medfilt(dIrog, 51),ones(200)/200, mode='same')/amax(dIrog))
#plot(tvec, convolve(Irog,ones(200)/200 , mode='same'))
#show()
try:
# try to detect cd trigger from data
ker = ones(200)/200
I_start = tvec[where( (fftconvolve(dIrog, ker, mode='same')> 0.05) | (fftconvolve(Irog,ker, mode='same') > 5) )[0][0]]
except:
I_start = nan # no I start
print "I_start", I_start
Irog[tvec < I_start - 1e-4] = 0
dIdt_rogMax = mquantiles(abs(diff(Irog)),0.98)[0] # maximum
IrogMax = mquantiles(abs(Irog),0.98)[0]
saveconst('dIdt_rogMax', dIdt_rogMax, fmt="%.3f" )
saveconst('IrogowskiMax', IrogMax, fmt="%.3f" )
save_adv('Irogowski', tvec, Irog)
save_adv('dIdt_rogowski', tvec, dIrog)
#plot(medfilt(dIrog,51))
#plot(convolve(dIrog,ones(200)/200, mode='full'))
#show()
#exit()
return Irog, dIdt_rogMax, IrogMax, I_start
def getIplasma(Uloop,Irog,I_start, PlasmaStart = None, PlasmaEnd = None ):
#plot(Uloop)
#plot(Irog)
#show()
#exit()
#print Uloop
t0 = time.time()
x0 = array([ 1.2 , ChamberResistance])
time_lag = 1.5e-3 # [ms] expected time before breakdown
if PlasmaStart is not None:
ind = (tvec > I_start) & (tvec < min(PlasmaStart - 1e-4, I_start + time_lag) )
else:
ind = (tvec > I_start) & (tvec < I_start + time_lag)
def fit(param, result = False):
Ich = zeros(len(tvec))
search_range = ( range(ind[0], ind[-1]) if not result else range(1, len(tvec)) )
#search_range = range(1, len(tvec))
for i in search_range: # implicite differencial equation I_n = ( U_n + C1/dt *I_(n-1) ) / (C2 + C1/dt)
Ich[i]=(Uloop[i]+param[0]*Ich[i-1])/(param[1]+param[0]);
if result:
return Ich
return (Irog - Ich)[ind]
conv = 0
x = nan
#time_lag = 1.5e-3 # [ms] expected time before breakdown
#while time_lag > 0.5e-3:
#if PlasmaStart is not None:
#ind = (tvec > I_start) & (tvec < min(PlasmaStart - 1e-4, I_start + time_lag) )
#else:
#ind = (tvec > I_start) & (tvec < I_start + time_lag)
#if all(~ind) and ~isnan(CdFieldTrigger): # no intersect
#ind = (tvec > CdFieldTrigger) & (tvec < CdFieldTrigger + time_lag)
#if all(~ind) and ~isnan(BdFieldTrigger): # no intersect
#ind = (tvec > BdFieldTrigger) & (tvec < BdFieldTrigger + time_lag)
#if all(~ind):
#print "!! Something wrong with triggers !!!", CdFieldTrigger, BdFieldTrigger
#ind = tvec < time_lag
#ind = where(ind)[0][::max(1, sum(ind)/100)] # take maximaly 100 points
#print "fitting from t=", tvec[ind[0]], " to t=", tvec[ind[-1]]
##print CdFieldTrigger + 0.1e-3, BdFieldTrigger + 0.1e-3, BdFieldTrigger + time_lag
##plot(tvec, Irog)
##plot(tvec[ind], Irog[ind])
###plot(Uloop)
##show()
##exit()
##all(ind == False)
#def fit(param, result = False):
#Ich = zeros(len(tvec))
#search_range = ( range(ind[0], ind[-1]) if not result else range(1, len(tvec)) )
##search_range = range(1, len(tvec))
#for i in search_range: # implicite differencial equation I_n = ( U_n + C1/dt *I_(n-1) ) / (C2 + C1/dt)
#Ich[i]=(Uloop[i]+param[0]*Ich[i-1])/(param[1]+param[0]);
#if result:
#return Ich
#return (Irog - Ich)[ind]
#x0 = array([ChamberInduktance/dt , ChamberResistance])
#x0 = array([ 1.2 , ChamberResistance])
#try:
##xxx
#x, conv = leastsq(fit, x0 , xtol=1e-3)
#print "fitting done", x, x0
#except:
#print "Fitting failed"
#conv = 0; x = [nan, nan]
#if conv == 0 or (abs(x[0]-x0[0])/x0[0] + abs(x[1]-x0[1])/x0[1] > 5 ): # failed convergence
#print "far from expected value"
#time_lag *= 0.8 # try shorter time
#else:
#time_lag = 0
#if conv == 0 or (abs(x[0]-x0[0])/x0[0] + abs(x[1]-x0[1])/x0[1] > 8 ): # failed convergence
#print "failed convergence in chamber properties solver", x0, x
#x = x0 # if everything fails ...
x = x0
Ich = fit(x, result = True)
#print Ich
saveconst('ChamberInduktance', x[0]*dt)
saveconst('ChamberResistance', x[1])
#print 'Time of fitting %g' % (time.time() - t0)
Ipl = Irog - Ich
#print Irog
#print Ipl
#plot(tvec,Uloop/amax(Uloop))
#plot(tvec,Irog/amax(Irog))
#show()
#plot(Irog)
#plot(Ich)
#plot(Ipl)
#show()
##exit()
# make a deconvolution of the Ip signal, because due to copper shielding and slow response of the rogowski coil, the signal is convoluted with exponential function,
t_exp = 0.7e-4 #roughly estimated influence of the chamber, crosschecked with signal from mirnov coils
win = 60
regularization = 1e-2
Ipl,retrofit = deconvolveExp(Ipl,t_exp,dt,win,regularization)
if PlasmaStart is not None: # second round ..
Ipl1 = median(Ipl[abs(tvec-PlasmaEnd - 1e-3) < 1e-4])
Ipl0 = median(Ipl[abs(tvec-PlasmaStart+5e-4) < 1e-4])
a = (Ipl1 - Ipl0) / (PlasmaEnd - PlasmaStart) # slope of drift
b = Ipl0 - a*PlasmaStart
#Ipl[tvec > PlasmaStart] -= a*tvec[tvec > PlasmaStart] + b
Ipl -= a*tvec + b
Ipl[tvec < max(nanmin([TororoidalMagneticFieldTrigger, BdFieldTrigger, CdFieldTrigger, StFieldTrigger])-1e-4 , 2e-3)] = 0
plasma_current_decay = amax(diff(fftconvolve(-Ipl, ones(100)/100, mode='same'))) / dt
save_adv('Iplasma', tvec, Ipl)
save_adv('Ich', tvec, Ich)
saveconst('plasma_current_decay', plasma_current_decay)
return Ipl, Ich
def getPhotod(PlasmaStart,PlasmaEnd, channel, name):
tvec, Photod = S['any', channel]
bias = median(Photod[tvec < nanmin([CdFieldTrigger, BdFieldTrigger, StFieldTrigger]) -1e-4 ]) # remove noise from tyristors
Photod -= bias # constant light in room ...
Photod = medfilt(Photod, 3) # remove fast outliers
## remove light from room (50Hz)
PlasmaEnd += 1e-3
Photod *= sign(mean(Photod[ (tvec>PlasmaStart) & (tvec<PlasmaEnd) ])) # invert signal
try:
ind = (tvec<PlasmaStart)|(tvec>PlasmaEnd)
power_suply = ones((len(tvec), 3))
power_suply[:,1] = cos(2*pi*tvec*100)
power_suply[:,2] = sin(2*pi*tvec*100)
proj = linalg.lstsq(power_suply[ind,:],Photod[ind])[0]
corr = dot(proj.T,power_suply.T ).T
Photod -=corr
except:
pass
if shot > 10527 and shot < 12897 or shot> 13105 : # only fot the new photocells
t = time.time()
if name == "Photod":
Photod,_ = deconvolveExp( Photod,1e-4,dt,300,3)
elif name == "PhotodHalpha":
Photod,_ = deconvolveExp( Photod,0.6e-3,dt,600,3)
Photod *= 1.4
print " dekonvoluce =================", time.time() - t
save_adv(name, tvec, Photod)
getMeanPhotod(Photod, PlasmaStart, PlasmaEnd, name)
return Photod
def PlasmaDetect(Iplasma, dIdt_rogMax, Uloop):
N_steps = len(Iplasma)
Iplasma = Iplasma.copy()
Iplasma[tvec < TororoidalMagneticFieldTrigger + 1e-4] = 0 # no plasma before mag. field
downsample = max(len(Iplasma)/1000, 1)
d = medfilt(Iplasma[::downsample], int((3e-4/dt/downsample)/2)*2+1)
d = medfilt( diff(d)/dt/downsample, int((3e-4/dt/downsample)/2)*2+1)
d = convolve( d, ones(20)/20, mode="same" ) # smooth the signal
################
min_dI = 5e4 # sensitivity of plasma detection
####################
d_start = d.copy() # prevent false plasma start detect
d_start[d_start < 0] = 0
try:
# prevent to be plasma false alarm started by triggers !!!
PlasmaStart = tvec[::downsample][where( (d_start > max(0.2*amax(d) , min_dI) ) & ~ ind_wrong[downsample::downsample] )[0][0]]
PlasmaEnd = tvec[::downsample][where( d < min(0.2*amin(d), -min_dI) )[0][-1] ]
PlasmaStart += 0.25e-3 # a fix that is removing efect of detection function "d" smoothing
PlasmaEnd -= 0.25e-3
except:
PlasmaStart = nan
PlasmaEnd = nan
Plasma = int(~ isnan(PlasmaStart) and ~ isnan(PlasmaEnd)) and (PlasmaStart < PlasmaEnd)
if not Plasma:
PlasmaStart = nan
PlasmaEnd = nan
#if Plasma and mean(Uloop[argmin(abs(tvec - PlasmaStart)):argmin(abs(tvec - PlasmaEnd))]) < 0: # negative uloop in plasma
#Plasma = False; PlasmaStart = nan; PlasmaEnd = nan
PlasmaTimeLength = PlasmaEnd - PlasmaStart
saveconst("PlasmaStartAdvanced", PlasmaStart - 0.1e-3 , fmt="%.5f" )
saveconst("PlasmaStart", PlasmaStart, fmt="%.5f" )
saveconst("PlasmaEnd", PlasmaEnd, fmt="%.5f" )
saveconst("PlasmaEndDelayed", PlasmaEnd * 1.1, fmt="%.5f" )
saveconst("Plasma", Plasma )
saveconst("PlasmaTimeLength", PlasmaTimeLength, fmt="%.5f" )
save_adv("PlasmaDetect", tvec[::downsample], d/amax(abs(d))*dIdt_rogMax )
return Plasma, PlasmaStart, PlasmaEnd, PlasmaTimeLength
def getMeanBt(Btor,PlasmaStart, PlasmaEnd ):
MeanBt = mean(Btor[(tvec > PlasmaStart) & (tvec < PlasmaEnd)])
saveconst('BtMean', MeanBt, fmt="%.3f" )
saveconst('ReversedBt', int(MeanBt > 0))
return MeanBt
def getMeanPhotod(Photod, PlasmaStart, PlasmaEnd, name):
MeanPhotod = median(Photod[(tvec > PlasmaStart) & (tvec < PlasmaEnd)])
saveconst(name + "Mean", MeanPhotod)
return MeanPhotod
def getTotalCharge(Ipla, PlasmaStart,PlasmaEnd ):
TotalCharge = (Ipla + abs(Ipla)) / 2 * dt
TotalCharge = cumsum(TotalCharge[(tvec > PlasmaStart) & (tvec < PlasmaEnd)])
TotalCharge = mean(TotalCharge)
saveconst('TotalCharge', TotalCharge, fmt="%.3f" )
return TotalCharge
def getMeanCurrent(Ipla, PlasmaStart,PlasmaEnd ):
MeanIpla = median(Ipla[(tvec > PlasmaStart) & (tvec < PlasmaEnd)])
saveconst("IplaMean", MeanIpla, fmt="%.1f" )
return MeanIpla
def getMeanUloop(Uloop, PlasmaStart,PlasmaEnd ):
MeanUloop = median(Uloop[(tvec > PlasmaStart) & (tvec < PlasmaEnd)])
saveconst("UloopMean", MeanUloop, fmt="%.2f" )
return MeanUloop
def getOhmicHeatingPower(MeanUloop,MeanPlasmaCurrent):
OhmicHeatingPower = abs(MeanUloop*MeanPlasmaCurrent)
saveconst("OhmicHeatingPowerMean", OhmicHeatingPower, fmt="%.2f" )
return OhmicHeatingPower
def getQedge(MeanBt,MeanPlasmaCurrent):
Qedge = 2*pi*MeanPlasmaRadius**2 / (Mu0 * MajorRadius ) *abs(MeanBt/MeanPlasmaCurrent)
saveconst("QedgeMean", Qedge, fmt="%.1f" )
return Qedge
def getMeanElectronTemperature(MeanUloop, MeanPlasmaCurrent):
#ElectronTemperature = (MajorRadius/MeanPlasmaRadius**2 * 8 * Zeff / 1.54e3)**(2./3) * (abs( MeanPlasmaCurrent / MeanUloop )) ** (2./3) #Ref: PhD Brotankova eq. 3.21 p. 26
ElectronTemperature = (MajorRadius/MeanPlasmaRadius**2 * 8 * Zeff*(1-sqrt(Aspect))**2 / 1.54e3)**(2./3) *abs(MeanPlasmaCurrent/(MeanUloop+1e-3))**(2./3)
saveconst("ElectronTemperatureMean", ElectronTemperature, fmt="%.1f" )
return ElectronTemperature
def getElectronTemperature(Uloop, Iplasma, PlasmaStart, PlasmaEnd):
#corrected for impurities and neoclasical effects.
ind = (tvec > PlasmaStart) & (tvec < PlasmaEnd)
ElectronTempTime = (MajorRadius/MeanPlasmaRadius**2 * 8 * Zeff*(1-sqrt(Aspect))**2 / 1.54e3)**(2./3) *abs(Iplasma/(abs(Uloop)+1e-3))**(2./3)
ElectronTempTime[~ind | (ElectronTempTime > 100 ) ] = nan
ker = sum(ind)/1000
medElectronTemp = medfilt(ElectronTempTime, 2*(ker)+1)
ind = ~isnan(medElectronTemp)
medElectronTemp[ind] = fftconvolve(medElectronTemp[ind], ones(ker)/ker, mode="same")
maxT = mquantiles(medElectronTemp[(tvec > PlasmaStart) & (tvec < PlasmaEnd)],0.99)[0]
save_adv("ElectronTemp", tvec, medElectronTemp)
#save_adv("ElectronMed", tvec, medElectronTemp)
saveconst("ElectronTempMax", maxT, fmt="%.1f" )
return ElectronTempTime, medElectronTemp, maxT
def getBreakDownVoltage(Uloop, Btor, Ipla, PlasmaStart, PlasmaEnd):
dt = (PlasmaStart + PlasmaEnd)/50
ind = (tvec > PlasmaStart-dt) & (tvec < PlasmaStart + dt)
#print PlasmaStart, PlasmaEnd
#plot(Uloop)
#show()
#try:
#t0 = time.time()
#plot(medfilt(Uloop[ind], 21), '.-')
#savefig('breakdown.png')
#clf()
#print "time breakdown " , t0 - time.time()
# kompromis mezi rychlostà a stabilitou
break_ind = where(ind)[0][argmax(medfilt(Uloop[ind], 21))]
#break_ind = argmin( abs(tvec - PlasmaStart ) )
Umax = Uloop[break_ind]
Btime = tvec[break_ind]
Bbreak = Btor[break_ind]
Bipla = Btor[break_ind]
saveconst("BreakDownVoltage", Umax, fmt="%.1f" )
saveconst("BreakDownTime", Btime)
saveconst("BreakDownBt", Bbreak)
saveconst("BreakDownIp", Bipla)
return Umax, Btime, Bbreak, Bipla
def getStateEqElectronDensity(Aktual_PfeifferMerkaVakua):
StateEqElectronDensity = (Aktual_PfeifferMerkaVakua/1000)/(kB * RoomTemperature)
saveconst("StateEqElectronDensity", StateEqElectronDensity)
return StateEqElectronDensity
def getElectronConfinementTimeFirstApprox(MeanUloop,MeanPlasmaCurrent, StateEqElectronDensity, ElectronTemperature ):
ElectronConfinementTimeFirstApprox = 3./8* PlasmaVolume * (ElectronTemperature* eV * StateEqElectronDensity) / abs( MeanPlasmaCurrent * MeanUloop) #Ref: PhD Brotankova
saveconst("ElectronConfinementTimeFirstApprox", ElectronConfinementTimeFirstApprox)
return ElectronConfinementTimeFirstApprox
def getChamberResistance(Plasma):
if Plasma:
Ibd = loadconst("BreakDownIp")
Ubd = loadconst("BreakDownVoltage")
else:
Ubd = loadconst("UloopMax")
Ibd = loadconst("IrogowskiMax")
ChamberResistance = abs( Ubd / Ibd )
saveconst("ChamberResistance_old", ChamberResistance)
return ChamberResistance
def Failures(Plasma, UloopMax, dIdt_rogMax, MeanUloop, BtMax, MeanBt, PlasmaStart, PlasmaEnd ):
PlasmaStatus = ""
if abs(UloopMax) < 1:
PlasmaStatus += "Failure (UloopMax < 1V);"
if abs(MeanUloop) < 3 and Plasma:
PlasmaStatus += "Too low Uloop (MeanUloop < 3V);"
if abs(dIdt_rogMax) < 0.01 :
PlasmaStatus += "Failure (dIdt_rogMax < 0.01V);"
if abs(MeanUloop) < 0.3 :
PlasmaStatus += "Failure (MeanUloop) < 0.3V);"
if abs(BtMax) < 0.01 :
PlasmaStatus += "Failure (BtMax) < 0.01T);"
if abs(MeanBt) < 0.01 :
PlasmaStatus += "Failure (MeanBt) < 0.01T);"
if PlasmaStatus == "":
PlasmaStatus = "OK"
print "PlasmaStatus: ", PlasmaStatus
saveconst("PlasmaStatus", PlasmaStatus)
if PlasmaStatus != "OK":
saveconst("PlasmaStartAdvanced", nan , fmt="%.5f" )
saveconst("PlasmaStart", nan, fmt="%.5f" )
saveconst("PlasmaEnd", nan, fmt="%.5f" )
saveconst("PlasmaEndDelayed", nan , fmt="%.5f" )
saveconst("PlasmaTimeLength", nan , fmt="%.5f" )
saveconst("Plasma", 0 )
return PlasmaStatus
def getGreenwaldDensity(Ipla):
N_gw = (1e-6*Ipla)/(pi*MeanPlasmaRadius**2)*1e20 #[m^-3]
save_adv("GreenwaldDensity", tvec, N_gw)
return N_gw
def getOhmicHeatingPowerTime(Ipla, Ich, Uloop):
Power = Ipla * Uloop
PowerCh = Ich * Uloop
save_adv("OhmicHeatingPower", tvec, Power)
save_adv("OhmicHeatingChamber", tvec, PowerCh)
return Power, PowerCh
def getQedgeTime(Btor,Ipla, PlasmaStart,PlasmaEnd ):
QedgeTime = 2*pi*MeanPlasmaRadius**2 / (Mu0 * MajorRadius ) *abs(Btor/(Ipla+1e-3))
QedgeTime[(tvec < PlasmaStart) | (tvec > PlasmaEnd)] = nan
QedgeTime[QedgeTime > 2* nanmedian(QedgeTime)] = nan
save_adv("Qedge",tvec, QedgeTime)
return QedgeTime
def getMagneticFlux(Uloop):
Flux = cumsum(Uloop+abs(Uloop))/2*dt
save_adv("TotalMagneticFlux", tvec, Flux)
return Flux
def getTransformatorSaturation(Uloop, Plasma, PlasmaEnd):
if Plasma == 1:
S = cumsum(Uloop[tvec < PlasmaEnd]) * dt / MaxTransformatorSaturation
else:
S = cumsum(Uloop) * dt / MaxTransformatorSaturation
S = amax(S) # maximal saturation
saveconst('TransformatorSaturation', S)
return S
def EnergyBalance(Ipla, Irog, Uloop, PlasmaStart,PlasmaEnd):
l_i = log(1.65+0.89*nu)
L_i = l_i*Mu0*MajorRadius/(4*pi)
L_e = MajorRadius*Mu0*(log(8*MajorRadius/MeanPlasmaRadius)-2) # wikipedia
L = L_i + L_e
W_e = L_e*Irog**2/2
W_i = L_i*Ipla**2/2
W_mag = W_i+W_e
win = 1000
lam= 1e0
P_mag, retrofit, chi2 = DiffFilter(W_i+W_e, dt,win, lam)
P_mag = squeeze(P_mag)
P_total = Uloop*Irog
P_input = Uloop*Ipla
L_correction = 5 #effective inductance is very different from calculated value, due to coupling with curent drive RLC circuit
sigma_plasma = abs(Ipla/(abs(Uloop)+0.1))
sigma_chamber = 1/9.2e-3 #FIXME conductivity of chamber
P_mag = -P_mag*L_correction
P_plasma = -P_input-P_mag*sigma_plasma/(sigma_plasma+sigma_chamber)
P_chamber = -(P_total-P_input)-P_mag*sigma_chamber/(sigma_plasma+sigma_chamber)
save_adv("PowerTotal", tvec, P_total)
save_adv("PowerMagnetic", tvec, P_mag)
save_adv("PowerPlasma", tvec, P_plasma)
save_adv("PowerChamber", tvec, P_chamber)
saveconst('MeanPowerPlasma', - mean( P_plasma[( tvec > PlasmaStart ) & ( tvec < PlasmaEnd)] ))
return P_total, P_mag, P_plasma, P_chamber
def BreakdownProba():
from pygolem_lite.breakdown import predict
if S['shotno'] > 15170 and S['working_gas'] == "H":
pressure = S['pressure'] / 2.4
else:
pressure = S['pressure']
bd_proba = predict(Ub=S['ub'], Ucd=S['ucd'], pressure=S['pressure'], Tcd=S['tcd'], gas_filling=S['gas_filling'], preionization=S['preionization'] > 0 )
if S['shotno'] > 15170 and S['working_gas'] != "H":
bd_proba = nan
saveconst('breakdown_probability', bd_proba)
def getBreakDownRate(Ipla, Ich, PlasmaStart, PlasmaEnd, trange = 0.4e-3):
ind = (tvec > PlasmaStart - trange/2) & (tvec < PlasmaStart + trange/2) # 200us time window
#ind = where(ind)[::max(1, sum(ind)/100)]
#print ind
down = max(1, sum(ind)/50)
#print "================ down ", down
tvec_tmp = (tvec - PlasmaStart)[ind][::down]
ipla_tmp = smooth(Ipla[ind], down/2.)[::down]
def fit(param, result = False):
ipla_exp = param[0]*exp( 1e3 * tvec_tmp / abs(param[1]) ) + param[2]
if not result:
return (ipla_tmp - ipla_exp)
else:
return ipla_exp
x0 = array([ 50 , 1, 0]) # initial guess
convergence = True
res = leastsq(fit, x0 , xtol=1e-5, full_output=1)
(param, pcov, infodict, errmsg, ier) = res
if ier not in [1,2,3,4]:
print "fitting failed"
convergence = False
print "fitting breakdown done", param, x0
s_sq = sum(fit(param)**2)/(len(ipla_tmp)-len(x0))
pcov = pcov * s_sq
#print pcov
rate = abs(param[1])*1e-3
err = sqrt(pcov[1,1])*1e-3
ind_ext = (tvec > PlasmaStart - 0.4e-3) & (tvec < PlasmaStart + 0.6e-3)
plot(tvec[ind_ext]-PlasmaStart, Ipla[ind_ext])
plot(tvec_tmp, ipla_tmp)
plot(tvec_tmp, fit(param, True))
#plot(tvec_tmp, fit(x0, True), ':')
title('Exp. Rate const= %g+-%g, window=%g' % (rate, err, trange) )
ylabel('I [A]')
xlabel('Time from breakdown [s]')
savefig('rate.png')
savetxt('data', hstack([tvec_tmp[:,None], ipla_tmp[:,None]]), fmt="%g")
if not convergence or rate > 0.01:
print "convergence failed", convergence, rate
rate = nan; err = nan
saveconst('breakdown_rate', rate)
saveconst('breakdown_rate_err', err )
return rate, err
|