1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297 | #!/usr/bin/python2
# -*- coding: utf-8 -*-
""" CREATED: 7/2012
AUTHOR: MICHAL ODSTRÄIL
"""
import matplotlib
matplotlib.rcParams['backend'] = 'Agg'
matplotlib.rc('font', size='10')
matplotlib.rc('text', usetex=True) # FIXME !! nicer but slower !!!
import pygolem_lite
from pygolem_lite import Shot
from numpy import *
from pygolem_lite.config import *
from pygolem_lite.modules import *
from matplotlib.pyplot import *
import time
from shutil import copy, move
import os
from scipy.interpolate import interp1d
def analysis():
#pass
try:
data = Shot()
I = data['plasma_current_mean'] * 1e-6
Bt = data['toroidal_field_mean']
P = data['input_power_mean']*1e-3
n = data['electron_density_mean'] * 1e-19
M = 1 # hydrogen !!
R = MajorRadius
eps = Aspect
kappa = 1
const = 5.62e-2
print "I", I
print "B", Bt
print "P", P
print "n", n
print "R", R
print "Aspect", Aspect
t_98 = const*I**0.93*Bt**0.15*P**-0.69*n**0.41*M**0.18*R**1.97*eps**0.58*kappa**0.78
print "confinent time = ", t_98 * 1e6
saveconst('t_98', t_98)
except Exception, e:
print " confinent time failed ", str(e)
def plot_data(ftype):
data = Shot()
plasma = data['plasma']
start = data['plasma_start']
end = data['plasma_end']
tvec,_ = data['plasma_current']
ind_plasma = (tvec > start) & ( tvec < end)
nGW_limit = 3 # n/nGW < 3
calb_photo = 10 if data.shot_num < 10025 else 30 # guess of absolute calbration of photodiode !!
if not plasma:
if not data.exist('current_cd_coils'):
return
t_cd, I_cd = data['current_cd_coils'] # current drive coils current
#plot(t_cd, I_cd)
#savefig('I_cd.png')
#clf()
_, I_cd, _ = DiffFilter(I_cd, mean(diff(t_cd)), 1000, 1e2) # smooth the data
t_PHI, PHI = data['total_magnetic_flux']
I_cd = interp(t_PHI, t_cd, squeeze(I_cd), left=0, right=0)
data = [[get_data('total_magnetic_flux', 'Total magnetic flux $\Phi$', '$\Psi$ [Vs]', xlim = [0, 40], reduction = True),
get_data([array([0, 40])*1e-3, ones(2)*MaxTransformatorSaturation], 'Max saturation', '$\Psi$ [Vs]' , ylim = [0,0.18], xlim = [0, 40], reduction = True)],
get_data( [t_PHI, I_cd] , 'Current drive I', 'I [A]', xlabel = 'Time [ms]', xlim = [0, 40], tvec_rescale=1e3),
]
paralel_multiplot(data, 'Total magnetic flux', 'magnetic_flux', (9,6), file_type = ftype)
plot( I_cd,PHI)
#plot( PHI)
savefig('I.png')
clf()
data = get_data( [I_cd, PHI ] , 'Hysteresis curve', '$\Phi$ [Vs]', xlabel = 'I [A]',xlim=[amin(I_cd), amax(I_cd)], plot_limits = False, tvec_rescale=1)
paralel_multiplot(data, 'Hysteresis curve', 'hysteresis', (9,3), file_type = ftype)
paralel_multiplot(data, "" , 'icon', (4,3), 40)
return
t0 = time.time()
tvec, safety_factor = Shot()['safety_factor']
try:
ne_corr = r0/a*(pos_part(1-R/r0))**1.5
except:
tvec_n_e = tvec
allow_corr = False # allow correction of plasma possition
try:
tvec_r, plasma_radius = Shot()['plasma_radius']
reliability = Shot()['plasma_position:reliability']
assert reliability < 100, "Unreliable plasma position"
plasma_radius_f = interp1d(tvec_r, plasma_radius, fill_value = 0, bounds_error = False)
corr = (plasma_radius_f(tvec) / MeanPlasmaRadius ) ** 2 # corrected for plasma readius
plot(tvec, corr)
savefig('corr.png')
close()
corr[ corr < 0.3 ] = nan
print "======= mean(isnan(corr)) ", mean(isnan(corr[ind_plasma]))
if mean(isnan(corr[ind_plasma])) > 0.3:
del corr
else:
allow_corr = True
except Exception, e:
print "correction on plasma position failed", str(e)
allow_corr = False
_, nGW = Shot()['greenwald_density']
nGW_med = max(nGW[ind_plasma])
try:
tvec_n_e, n_e = Shot()['electron_density']
except:
#raise
print "electron_density failed"
try:
tvec_r, R_position = Shot()['plasma_position_r']
plasma_R_pos_f = interp1d(tvec_r, R_position, fill_value = 0, bounds_error = False)
a = 0.1 #[m]
r0 = plasma_radius_f(tvec_n_e)
R = plasma_R_pos_f(tvec_n_e)-0.4
pos_part = lambda x: (x+abs(x))/2
ne_corr_nu1 = r0/a*(pos_part(1-R/r0))**1.5 #peaking factor 1; profile = (1-(r/a)^2)
ne_corr_nu0_5 = r0/a*(pos_part(1-R/r0)) #peaking factor 0.5; profile = sqrt(1-(r/a)^2)
ne_corr_nu1[ne_corr_nu1>1.5] = nan
ne_corr_nu0_5[ne_corr_nu0_5>1.5] = nan
plot(tvec_n_e, ne_corr_nu1)
plot(tvec_n_e, ne_corr_nu0_5)
savefig("ne_corr_nu.png")
close()
if all(isnan(ne_corr_nu0_5)):
del ne_corr_nu0_5
del ne_corr_nu1
except Exception, e:
print "electron_density correction failed", str(e)
safety_factor[safety_factor > 2* nanmedian(safety_factor[ind_plasma])] = nan
#try:
#temp_spec = Shot()['spectrometr:temperature']
#power_spec = Shot()['spectrometr:total_radiated_power']
#except:
#print "missing data spectrometer"
xlim = array([start, end])*1e3
ylim = [0, None]
figsize = (10,4)
params = dict(xlim = xlim, ylim = ylim, reduction = True)
data_1 = [
[
get_data([tvec,safety_factor], 'Safety factor edge (Q$_{edge}$)', 'Q [-]' , **params),
get_data([tvec,safety_factor/3], '(Q$_{center}$) (peaking factor = 2)', 'Q [-]' , **params),
get_data([tvec,corr*safety_factor], 'Q edge with radius', 'Q [-]' , fmt='b--', **params) if allow_corr else [],
get_data([tvec,corr*safety_factor/3], 'Q center with radius', 'Q [-]' , fmt='r--', **params) if allow_corr else []
],
[
get_data([tvec,1/safety_factor], 'Inverse Safety factor $\iota_{edge}$', '$\iota$ [-]' , **params),
get_data([tvec,3/safety_factor], ' $\iota_{center}$ (peaking factor = 2)', '$\iota$ [-]' , **params),
get_data([tvec,1/(safety_factor*corr)], ' $\iota_{edge}$ with radius', '$\iota$ [-]' , fmt='b--', **params) if allow_corr else [],
get_data([tvec,3/(safety_factor*corr)], ' $\iota_{center}$ with radius', '$\iota$ [-]' , fmt='r--', **params) if allow_corr else [],
get_data([array([start,end]), array([0.5, 0.5])], 'Q=2', '$\iota$ [-]' , fmt = "k:", **params)
]
]
try:
multiplot(data_1, 'Safety factor', 'plot_1', figsize, file_type = ftype)
except Exception, e:
print 'Safety factor failed', str(e)
data_2 = [[
get_data('electron_temperature', 'Electron temperature', 'T [eV]' , **params),
get_data('electron_temperature', '$T_e$ corrected by plasma radius', 'T [eV]' , data_rescale = 1/corr, fmt='r--', **params) if allow_corr else [],
get_data('spectrometr:temperature', '$T_e$ spectrometer', 'T [eV]' ,ylim = ylim,xlim = xlim, fmt='r--') ,
]]
try:
multiplot(data_2, 'Electron temperature', 'plot_2', figsize, file_type = ftype)
except Exception, e:
print 'Electron temperature failed', str(e)
data_3 = [[
get_data('input_power_total', 'Ohmic heating - total', 'P [kW]' ,xlim = xlim, data_rescale=1e-3, reduction = True),
get_data('input_power_magnetic', 'Ohmic heating - magnetic', 'P [kW]' ,xlim = xlim, data_rescale=-1e-3, reduction = True),
get_data('input_power_plasma', 'Ohmic heating - plasma', 'P [kW]' , xlim = xlim, data_rescale=-1e-3, reduction = True),
get_data('input_power_chamber', 'Ohmic heating - chamber', 'P [kW]' ,xlim = xlim, data_rescale=-1e-3, reduction = True),
get_data('photodiode', 'Output power (diod)', 'P [kW]' ,xlim = xlim, data_rescale = calb_photo , reduction = True, fmt = "k--"),
get_data('spectrometr:total_radiated_power', 'Output power (spectrometer)', 'P [kW]' ,xlim = xlim, data_rescale=1e-3 , fmt = "r--"),
get_data([array([start,end]), array([0, 0])], '', 'P [kW]' , xlim = xlim, reduction = True, fmt = "k:")
]]
try:
multiplot(data_3, 'Input / Output power', 'plot_3', figsize, file_type = ftype)
except Exception, e:
print 'Input / Output power', str(e)
data_4 = []
if 'n_e' in locals():
data_4 = [
get_data('electron_density', 'Electron density ($n_e$)', 'n$_{e}$ [10$^{19}\cdot$m$^{-3}$]' , data_rescale= 1e-19, **params) ,
get_data('electron_density', '$n_e$ - position corrected, $\\nu = 1$', 'n$_{e}$ [10$^{19}\cdot$m$^{-3}$]' ,data_rescale= 1e-19/ne_corr_nu1, fmt='k--', **params) if 'ne_corr_nu1' in locals() else [],
get_data('electron_density', '$n_e$ - position corrected, $\\nu = 0.5$', 'n$_{e}$ [10$^{19}\cdot$m$^{-3}$]', data_rescale= 1e-19/ne_corr_nu0_5, fmt='k:', **params) if 'ne_corr_nu0_5' in locals() else [] ]
data_4 += [get_data('greenwald_density', 'Greenwald density ($n_{GW}$)', 'n$_{GW}$ [10$^{19}\cdot$m$^{-3}$]' , data_rescale= 1e-19, **params),
get_data('greenwald_density', 'Greenwald density with radius ($n_{GW}$)', 'n$_{GW}$ [10$^{19}\cdot$m$^{-3}$]' ,data_rescale=1e-19/corr, fmt='r--', **params) if allow_corr else [],
get_data([array([start,end]), array([nGW_med, nGW_med])*nGW_limit], '~GW limit', 'n$_{e}$ [10$^{19}\cdot$m$^{-3}$]' , data_rescale= 1e-19 , fmt = "k:", **params) if 'n_e' in locals() else [],
]
data_4 = [data_4]
try:
multiplot(data_4, 'Density', 'plot_4', figsize, file_type = ftype)
except Exception, e:
print 'Density failed ', str(e)
#os.system('convert -resize 150x120\! total_plot.png icon.png')
print "===== plotting done ===== "
data = data_1 + data_2 +data_3 + (data_4 if 'n_e' in locals() else [])
#print data
try:
multiplot(data, "" , 'icon', (4,3), 40)
except Exception, e:
print 'Icon failed', str(e)
#raise
def main():
if sys.argv[1] == "analysis":
analysis()
if sys.argv[1] == "plots":
plot_data('png')
saveconst('status', 0)
if sys.argv[1] == "postanalysis":
plot_data('png')
saveconst('status', 0)
if __name__ == "__main__":
main()
|