1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
calculate nonegative projections of the spectral basis to the
measured spectra. Projection basis was found as nonnegative sparse
decomposition of about 3500 spectra to 11 components.
In the first part of the algoritm is remove stray light and made a corrections of the instrumental function
It is very important because highly subpixel precision is necassary.
First correction is made as a blind deconvolution of shape and then a zero and first
order of the wavelength polynome are made. Than a projections even with realible estimate of the
statistical errors are made.
In the second part of the script is Integrated data analyzis of the radiation.
Data from spectrometer with low time but very high wavelength resolution van be combinated
with higt time, but low wavelength resoltion from othe diagnostics as photodiodes, cameras etc..
Advantages: extremly high sensitivity, can be identified even weak lines lost between
strong surrounding lines of other ions. Immune agains line overburning.
(Relatively) fast caculaton. It can never missidentified one of the strong lines.
Disadvantage: In rare cases there can happend something interesting which
can not be described by these limited number of components,
one kind of event is here:7307,7960;9298,9156;10097
and also probably a new iont from unknow element can occure
9664,9665,9670,9839,9906,10131,10136. And finally a molecular spectrum 9504
On the other hand, without this algoritm it would by imposible to find that
there is something interesting in this discharges.
Autor: Tomas Odstrcil
date:12.12.2012
"""
from numpy import *
import matplotlib
matplotlib.rcParams['backend'] = 'Agg'
from matplotlib.pyplot import *
from SpectrometerControl import *
from scipy.linalg import norm, inv,qr,pinv
from scipy.special import erfinv, erf
from scipy.stats.mstats import mquantiles
from scikits.sparse.cholmod import cholesky, analyze, cholesky_AAt,CholmodError
from scipy.signal import fftconvolve,convolve,gaussian,order_filter
from numpy import linalg
import time
from scipy import sparse
from scipy.sparse import *
from scipy.optimize import minimize_scalar,nnls,fmin_powell,fmin_cg,fmin_bfgs,fmin_ncg
from scipy.fftpack import fft,ifft
from fftshift import fftshift
from pygolem_lite.modules import save_adv,load_adv
from scipy.sparse import block_diag
from pygolem_lite import saveconst
from scipy.interpolate import interp1d
names = ('HI','OI','OII', 'OIII', 'HeI', 'CII', 'CIII', 'NI','NII', 'NIII','Mystery1', 'OIV' )
styles = ('b-','r-','r--', 'r-.' , 'g-' , 'k--', 'k-.' , 'y-','y--', 'y-.' , 'c-' , 'm:' )
def Shift(x,s,win,lam):
#místo přímého posuvu udělám inverzi posuvu zpět, je to stabilnější
s-= 0.5 # systematický posuv, aby se to shodovalo s lineární interpolací
s*= -1 #invezní posuv
win = (win/2)*2
diag_data = ones((2,win))
diag_data[1,:] *=s-floor(s)
diag_data[0,:] *=floor(s)+1-s
S = spdiags(diag_data, (-floor(s),-floor(s)-1), win, win,format='csr')
f0 = zeros(win)
f0[win/2] = 1
factor = cholesky_AAt(S.T,beta = lam)
g = squeeze(factor(S.T*f0))
Sx = fftconvolve(x,g,mode = 'same')
return Sx
def GapsFilling(signal,win = 100, lam = 1e-1): #BUG loadovat to z pygolema
"""
=============================== Gaps Filling Filter 0.1 =====================
reconstruct the corrupted data (data with nans) by tikhonov-philips regularization with regulariting by laplace operator. And return smoothed retrofit
Reconstruction is based on the invertation of the identical operator with zeros at the lines corresponding to the mising signal.
due to memory and speed limitation the reconstruction is done on the overalaping intervals with width "win"
signal - long data vector
win - width of the recosntruction interval - it mas be much bigger than the gaps width
lam - regularization parameter, dependes on the noise in data
Autor: Tomas Odstrcil 2012
"""
from scikits.sparse.cholmod import cholesky, analyze,cholesky_AAt
from scipy.sparse import spdiags, eye
n = len(signal)
# signal extension -- avoid boundary effects
n_ext = (n/win+3)*win
ext_signal = ones(n_ext)*nan
side = (n_ext-n)/2
ext_signal[side:-side-n%2] = signal
ext_signal[:side+1] = median(signal[~isnan(signal)][:win/2])
ext_signal[-side-1:] = median(signal[~isnan(signal)][-win/2:])
intervals = arange(0,n_ext, win/2)
ind_nan = isnan(ext_signal)
ext_signal[ind_nan] = 0
recon = copy(ext_signal)
diag_data = ones((2,win))
diag_data[1,:]*=-1
D = spdiags(diag_data, (0,1), win, win,format='csr')
DD = D.T*D
I = eye(win,win,format='csc')
Factor = cholesky_AAt(DD, 1./lam)
for i in range(len(intervals)-2):
gaps = spdiags( int_(ind_nan[intervals[i]:intervals[i+2]]),0, win, win,format='csc') # use overlapping intervals !!!
Factor.update_inplace(gaps/sqrt(lam), subtract=True) # speed up trick
g = Factor(ext_signal[intervals[i]:intervals[i+2]]/lam)
Factor.update_inplace(gaps/sqrt(lam), subtract=False) # speed up trick
recon[(intervals[i]+intervals[i+1])/2:(intervals[i+1]+intervals[i+2])/2] = g[len(g)/4:-len(g)/4,0]
#plot(recon,'r')
#plot(ext_signal,'b')
#savefig('gapsfill.png')
#clf()
chi2 = sum((ext_signal-recon)[~ind_nan]**2)/n
recon = recon[(n_ext-n)/2:-(n_ext-n)/2]
return recon, chi2
def Resample(tvec,vec,n,t_min = None,t_max = None,left = 0,right = 0):
if t_min == None:
t_min = amin(tvec)
if t_max == None:
t_max = amax(tvec)
std = (t_max-t_min)/(tvec[1]-tvec[0])/n/2
std = max(std,1)
gauss_win = gaussian(std*3,std)
gauss_win/= sum(gauss_win)
vec_smooth = fftconvolve(vec,gauss_win, mode = 'same')
tvec_new = linspace(t_min,t_max,n)
vec_new = interp(tvec_new,tvec, vec_smooth, left=left, right=right)
return tvec_new,vec_new
def downsample(data, sampleInteg = False, downsample = 1):
downsampled = reshape(data, (-1,downsample), order = 'C')
if sampleInteg:
downsampled = sum(downsampled, axis = 1)/downsample
else:
downsampled = downsampled[:,0]
return downsampled
def upsample_smooth(data, win,lam, sampleInteg = False, upsample = 1):
win = 2*(win/2)
n = len(data)
npix = upsample*win
n_ext = (n/win+1)*win
ext_signal = empty(n_ext)
ext_signal[(n_ext-n)/2:-(n_ext-n)/2] = data
ext_signal[:(n_ext-n)/2+1] = 0#median(data[:win/2])
ext_signal[-(n_ext-n)/2-1:] = 0#median(data[win/2:])
retrofit = zeros(n_ext*upsample)
#solve the upsamling problem only for short interval win
diag_data = ones((2,npix))
diag_data[1,:]*=-1
D = spdiags(diag_data, (0,1), npix, npix,format='csr')
D = D.T*D
DD = D.T*D
if sampleInteg:
ReductMatrix = kron(eye(win,win),ones((1,upsample))/upsample,format='csr')
else:
ReductMatrix = kron(eye(win,win),eye(1,upsample),format='csr')
T = ReductMatrix
f = ext_signal
f0 =zeros(win)
f0[win/2] = 1
factor = cholesky(T.T*T+lam*DD)
g = squeeze(factor(T.T*f0))
#apply the single point solution g on the whole data vector
T_Tf = zeros((n_ext,upsample))
T_Tf[:,0] = f
T_Tf = squeeze(reshape(T_Tf, (-1,1), order = 'C'))
if win*upsample > 100: #choose the faster way
upsampled = fftconvolve(T_Tf,g,mode = 'same')
else:
upsampled = convolve(T_Tf,g,mode = 'same')
retrofit[:-1] = upsampled[1:] #I don't know why but this must by done.
retrofit = reshape(retrofit, (-1,upsample), order = 'C')
if sampleInteg:
retrofit = mean(retrofit, axis = 1)
else:
retrofit = retrofit[:,0]
upsampled = upsampled[(n_ext-n)/2*upsample:-(n_ext-n)/2*upsample]
retrofit = retrofit[(n_ext-n)/2:-(n_ext-n)/2]
#print 'error ',sum(abs(data-retrofit))
return upsampled,retrofit
def removeStrayLight(data):
#experimentálně ověřeno, lepší algoritmus mě nenapadl
m = len(data)
win = 101
quantile = 0.1
shift = 1.4*(10*erfinv((quantile-0.5)*2))
domain = ones(win)
rank = int(win*quantile)
background = order_filter(data-shift,domain,rank)
gauss = exp(-linspace(-1,1,win)**2)
gauss-= min(gauss)
gauss/= sum(gauss)
background = fftconvolve(background,gauss , mode = 'same')
data-= background*0.8
return data
import pyfftw
def deconv_opt(spectra,retrofit,overburned,lam,ker0=None):
n = len(spectra)
normal = fftconvolve(overburned, ones(5),mode='same') < 1./5
fr = fft(retrofit[normal], n)/sqrt(n)
fs = fft( spectra[normal], n)/sqrt(n)
ker_full = pyfftw.n_byte_align_empty(n, 16,dtype=complex)
Fker_full = pyfftw.n_byte_align_empty(n, 16,dtype=complex)
fft_forward = pyfftw.FFTW(ker_full,Fker_full, direction='FFTW_FORWARD', flags=['FFTW_ESTIMATE','FFTW_DESTROY_INPUT'])
doF = sum(normal)*5.
def f(ker):
ker_full[:]=0
ker_full[n/2-(len(ker))/2+1:n/2+(len(ker))/2+1] = ker
ker_full[:] = fftshift(ker_full)
fft_forward()
chi2 = norm(fs-fr*Fker_full)**2/doF
return chi2+norm(ker)*lam
if ker0 == None:
L = 10
ker0 = zeros(L)
ker0[L/2-1] = 1
else:
L = len(ker0)
#t = time.time()
#y = fmin_powell(f, ker0, xtol=1e-5,ftol=1e-5,maxfun=1e6,disp=True)
y= fmin_bfgs(f, ker0, gtol=1e-1,maxiter=1e6,disp=False)
#print time.time()-t
#exit()
ker_full = zeros(n)
ker_full[n/2-L/2:n/2+(L+1)/2] = real(y)
return real(y),ker_full
def optim_fun(noise,spectra,retrofit,overburned,lim):
dec = deconv(noise,spectra,retrofit,overburned,lim)
chi2 = norm(spectra-fftconvolve(retrofit,dec,mode='same'))**2/size(spectra)/5
return exp(abs(log(chi2)))
def CalcProjections(spectrometr,shot, plasma_start,plasma_end):
shot_number = 100000
#BUG!!!!
tvec = shot.time_stamps/1000.
wavelength, intensities = shot.getData()
MaxIntensity = 32000 # hodnota po korekci nelinearity detektoru!
if shot_number < 8500:
MaxIntensity = 18200
overburned = intensities > MaxIntensity
if shot_number < 7625: #koukali jsme se skrze sklo
overburned[wavelength < 330,:] = True
if shot_number > 10300 and shot_number < 18466: #koukali jsme se skrze sklo
overburned[wavelength < 330,:] = True
if shot_number > 18700 and shot_number < 21516: #koukali jsme se skrze sklo
overburned[wavelength < 330,:] = True
#if shot_number > 18700: #koukali jsme se skrze sklo
#overburned[wavelength < 330,:] = True
overburned[spectrometr.black_pixels,:] = False
if spectrometr.hotPixels != []:
overburned[spectrometr.hotPixels,:] = True
data = load('SpectraComponents2.npz') #the most critical part, weeks of my work
components = data['components']
intensities-= mean((intensities[spectrometr.black_pixels,:]))
n_features = size(components,1)
n_components = size(components,0)
n_measurement = size(intensities,1)
upsample = 10
projection = zeros((n_measurement, n_components))
projectionError = zeros((n_measurement, n_components))
dataSTD = shot.readoutNoiseRMS
#detect plasma
plasma = nanmax(intensities, axis = 0) > 10*dataSTD #překročení této hranice šumem je sttaisticky vellmi nepravděpodobné
save_adv('./data/plasma', tvec,plasma)
if not any(plasma):
return True
imin = amin(where(plasma)[0])-1
imax = amax(where(plasma)[0])
#print plasma
#print 'tvec',imin,imax, isfinite(plasma_start), isfinite(plasma_end)
#if isfinite(plasma_start) and isfinite(plasma_end):
##print 'tvec ', (arange(n_measurement)-imin)*(plasma_end-plasma_start)/(imax-imin)+plasma_start
#tvec = (arange(n_measurement)-imin)*(plasma_end-plasma_start)/(imax-imin)+plasma_start+shot.integ_time/2000
plasma[1:] = plasma[1:] | plasma[:-1]
plasma[:-1] = plasma[1:] | plasma[:-1]
##preprocess
for i in where(plasma)[0]:
intensities[:,i] = removeStrayLight(intensities[:,i])
intensities /= dataSTD #normalize by staistical error
components_reshaped = reshape(components.T, (1,-1), order = 'F')[0,:]
upsampled, retrofit = upsample_smooth(components_reshaped, 30,1, sampleInteg = True, upsample = upsample)
upsampled_components = reshape(upsampled, (n_features*upsample,-1), order = 'F').T
spect_lines = sum(components,axis = 0) != 0 #TODO 60% je nulových => jde to tím urychlit
def estimateResid(components ):
resid = zeros(n_measurement)
for j in where(plasma)[0]:
normalPx = ~overburned[:,j]
_,resid[j] = nnls(components[:,normalPx].T,intensities[normalPx,j])
chi2 = norm(resid)**2/(sum(plasma)*size(intensities,0))
return chi2
def shiftSpectra(components,(s1,s2)):
n = size(components,1)
shift_components = interp1d(linspace(s2,n-s2-1,n),components,
bounds_error=False,fill_value=0)(s1+arange(n))
return shift_components
def fitfun(params):
shift_components = shiftSpectra(components_corr, params)
chi2 = estimateResid(shift_components)
#print chi2
return chi2
total_intens = sum( intensities[:,plasma], axis = 1)
L = 10
ker = zeros(L)
ker[L/2-1] = 1
ker_full = zeros(n_features)
ker_full[n_features/2] = 1
normalPx = sum(overburned ,1) == 0
components_corr = zeros_like(components)
print 'calc inst fun'
for i in range(5):
for j in range(n_components):
components_corr[j,:] = fftconvolve(components[j,:],ker_full,mode='same')
proj, resid = nnls(components_corr[:,normalPx].T,total_intens[normalPx])
retrofit = dot(proj.T,components).T
ker,ker_full = deconv_opt(total_intens,retrofit,~normalPx,2,ker)
t = time.time()
par0 = [0,0]
#print par0, [components_corr,]
y = fmin_powell(fitfun,par0, xtol=1e-4,ftol=1e-3,maxfun=1e6,disp=False)
components_corr = shiftSpectra(components_corr, y)
proj, resid = nnls(components_corr[:,normalPx].T,total_intens[normalPx])
#print resid**2/n_features/sum(plasma)
print 'calc inst fun finished'
components = components_corr
components[components < 0] = 0
difference = zeros(n_features)
chi2ion = zeros(n_components)
resid = ones(n_measurement)*sqrt(n_features)
q,r = qr(components.T,mode = 'economic')
F = matrix(dot(inv(r),q.T))
for j in where(plasma)[0]:
normalPx = ~overburned[:,j]
projection[j, :], resid[j] = nnls(components[:,normalPx].T, intensities[normalPx,j])
#try to account error nonstatistical errors in fit
difference[normalPx] = intensities[normalPx,j]-dot(components.T,projection[j, :])[normalPx]
difference[~normalPx] = amax(difference[normalPx] ) #prostě tam bude velká chyba
DataError = sqrt(difference**2+1)-(sqrt(2)-1)
projectionError[j, :] = sqrt(diag(F*diag(DataError**2)*F.T))
for i in range(n_components):
chi2ion[i] += norm(difference*(components[i,:]/(1e-3+sum(components,axis = 0))))**2/n_features
#plot(wavelength, (dot(diag(projection[j, :]),components)).T,linewidth = 0.2)
#plot(wavelength, intensities[:,j],'b-.')
#plot(wavelength,dot(components.T,projection[j, :]), 'k')
#plot(wavelength[:], intensities[:,j]-dot(components.T,projection[j, :]), 'r:' ) #ylim(-2, 100)
#show()
spectra = sum( intensities[:,plasma], axis = 1)
retrofit = sum( dot(projection,components).T, axis = 1)
chi2 = norm(spectra-retrofit)**2/n_features/sum(plasma)
print 'standart chi2',chi2
normalPx = sum(overburned ,1) == 0
#calculate global charasteristics of the fit and spectra
chi2 = sum(resid**2)/(n_measurement*n_features)
print chi2, resid**2/n_features
print chi2,chi2ion
savetxt('./results/IonChi2'+'.txt',chi2ion)
savetxt('./results/TimeChi2'+'.txt',resid**2/n_features)
save('./results/TotalChi2',chi2)
energy_constants = zeros(n_components)
for i in range(n_components):
norm_comp = spectrometr.convertCountToPhotons(shot.wavelength,
copy(components[i,:]),shot.integ_time)
energy_constants[i] = sum(norm_comp)
abs_calibration = loadtxt('absolute_calibration.txt')
energy_constants *= abs_calibration
rel_proj = copy(projection)
rel_proj_err = copy(projectionError)
projection*= energy_constants
projectionError *= energy_constants
P_total = sum(projection,1)
P_total_error = sqrt(sum(projectionError**2,1))
if isfinite(plasma_start) and isfinite(plasma_end):
mean_tvec = sum(P_total*tvec)/sum(P_total)
print mean_tvec
print (plasma_start+plasma_end)/2
tvec = tvec-mean_tvec+(plasma_start+plasma_end)/2-shot.integ_time/1e3/2
save_adv('./data/TotalPower',tvec,P_total,data_err=P_total_error, tvec_err = 1e-3 )
n_frames = (plasma_end-plasma_start)/(shot.integ_time/1000)
saveconst('./HistoricalAnalysis/meanPower',sum(P_total[plasma])/n_frames)
save_adv('./data/projection', tvec,rel_proj, data_err=rel_proj_err, tvec_err=1e-3 )
save_adv('./data/intensities', tvec,intensities)
save_adv('./data/components', wavelength,components)
save_adv('./data/plasma', tvec,plasma)
save_adv('./data/overburned', wavelength,overburned)
save('./data/energy_constants',energy_constants)
|