Diagnostics/ParticleFlux/RailProbe/Reports/Macha-2021-ECPP/poster.tex

\documentclass[portrait,final,a0paper]{baposter}
%\documentclass[a4shrink,portrait,final]{baposter}
% Usa a4shrink for an a4 sized paper.

\tracingstats=2

\usepackage{calc}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{relsize}
\usepackage{multirow}
\usepackage{bm}
\usepackage{wrapfig}
\usepackage{lipsum}
\usepackage{hyperref}
\usepackage{framed}

\usepackage{graphicx}
\usepackage{multicol}

\usepackage{pgfbaselayers}
\pgfdeclarelayer{background}
\pgfdeclarelayer{foreground}
\pgfsetlayers{background,main,foreground}

\usepackage{times}
\usepackage{helvet}
%\usepackage{bookman}
\usepackage{palatino}

\newcommand{\captionfont}{\footnotesize}

\selectcolormodel{cmyk}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Some math symbols used in the text
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Format 
\newcommand{\Matrix}[1]{\begin{bmatrix} #1 \end{bmatrix}}
\newcommand{\Vector}[1]{\Matrix{#1}}
\newcommand*{\SET}[1]  {\ensuremath{\mathcal{#1}}}
\newcommand*{\MAT}[1]  {\ensuremath{\mathbf{#1}}}
\newcommand*{\VEC}[1]  {\ensuremath{\bm{#1}}}
\newcommand*{\CONST}[1]{\ensuremath{\mathit{#1}}}
\newcommand*{\norm}[1]{\mathopen\| #1 \mathclose\|}% use instead of $\|x\|$
\newcommand*{\abs}[1]{\mathopen| #1 \mathclose|}% use instead of $\|x\|$
\newcommand*{\absLR}[1]{\left| #1 \right|}% use instead of $\|x\|$

\def\norm#1{\mathopen\| #1 \mathclose\|}% use instead of $\|x\|$
\newcommand{\normLR}[1]{\left\| #1 \right\|}% use instead of $\|x\|$

\def\bi{\begin{itemize}}
\def\ei{\end{itemize}}
\def\im{\item}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Multicol Settings
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}

\renewcommand\refname{\vskip -15pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save space in lists. Use this after the opening of the list
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\compresslist}{%
\setlength{\itemsep}{1pt}%
\setlength{\parskip}{0pt}%
\setlength{\parsep}{0pt}%
}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Begin of Document
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{document}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Here starts the poster
%%%---------------------------------------------------------------------------
%%% Format it to your taste with the options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define some colors

\definecolor{yellow}{cmyk}{0,0,0.9,0.0}
\definecolor{reddishyellow}{cmyk}{0,0.22,1.0,0.0}
\definecolor{black}{cmyk}{0,0,0.0,1.0}
\definecolor{darkYellow}{cmyk}{0,0,1.0,0.5}
\definecolor{lightyellow}{cmyk}{0,0,0.3,0.0}
\definecolor{lighteryellow}{cmyk}{0,0,0.1,0.0}
\definecolor{lighteryellow}{cmyk}{0,0,0.1,0.0}
\definecolor{lightestyellow}{cmyk}{0,0,0.05,0.0}

\definecolor{silver}{cmyk}{0,0,0,0.3}
\definecolor{lightsilver}{cmyk}{0,0,0,0.15}
\definecolor{lightersilver}{cmyk}{0,0,0,0.10}
\definecolor{lightestsilver}{cmyk}{0,0,0,0.01}
\definecolor{darkSilver}{cmyk}{0,0,0,0.1}
\definecolor{white}{cmyk}{0,0,0,0}

\definecolor{h-alpha}{cmyk}{0,0.74,0.34,0.35}
\definecolor{h-alpha-2}{cmyk}{0,0.05,0.02,0.17}
\definecolor{dark_red_1}{rgb}{1, 0.1,0.1}
\definecolor{dark_red_2}{rgb}{0.8, 0.2,0.2}
\definecolor{darkblue}{cmyk}{0.93,0.93,0,0.78}
\definecolor{blue}{cmyk}{0.53,0.53,0,0.62}

%%
% \typeout{Poster Starts}
% \background{
%   \begin{tikzpicture}[remember picture,overlay]%
%     \draw (current page.north west)+(-2em,2em) node[anchor=north west] {\includegraphics[height=1.1\textheight]{silhouettes_background}};
%   \end{tikzpicture}%
% }

\newlength{\leftimgwidth}
\begin{poster}%
  % Poster Options
  {
  % Show grid to help with alignment
%  grid=yes,
  % Column spacing
  colspacing=0.5em,
 % ============Ondra G pokus o H aplha ==============
  bgColorOne=white,  %First background color. There are two background color to allow for background gradients.
  %bgColorTwo=lightestsilver,
  borderColor=h-alpha-2,		%Color used for the borders of the poster boxes
  headerColorTwo=darkblue,	%First color of box header. Two colors can be used to dene gradients.
  headerColorOne=blue,
  headerFontColor=white,
  boxColorOne=h-alpha-2,
  boxColorTwo=white,
%=========== barevné přechody==========
 % Format of textbox
% ==========nové ===============
  textborder=rounded,  %Which kind of border should the lower part of the text boxes have. Possible values are:
			    %1. none 2. bars 3. coils 4. triangles 5. rectangle 6. rounded 7. faded
  % Format of text header
  headerborder=open,%At which sides of the text box headers should we draw a border. Possible values are:
		    %1. none 2. closed 3. open
  headershape=roundedright,
  headershade=shadetb, %1. plain 2. shade-lr 3. shade-tb 4. shade-tb-inverse
  boxshade=shadelr,
  background=plain,
% % Color style
%  ============žlutá ==============
%   bgColorOne=lighteryellow,
%   bgColorTwo=lightestyellow,
%   borderColor=reddishyellow,
%   headerColorOne=yellow,
%   headerColorTwo=reddishyellow,
%   headerFontColor=black,
%   boxColorOne=lightyellow,
%   boxColorTwo=lighteryellow,
% ============stříbrná ==============
  %bgColorOne=lightersilver,  %First background color. There are two background color to allow for background gradients.
  %bgColorTwo=lightestsilver,
  %borderColor=silver,		%Color used for the borders of the poster boxes
  %headerColorOne=silver,	%First color of box header. Two colors can be used to dene gradients.
  %headerColorTwo=lightersilver,
  %headerFontColor=black,
  %boxColorOne=lightestsilver,
  %boxColorTwo=white,
%=%========== barevné přechody==========
 % Format of textbox
% ==========nové ===============
%  textborder=roundedleft,  %Which kind of border should the lower part of the text boxes have. Possible values are:
%			    %1. none 2. bars 3. coils 4. triangles 5. rectangle 6. rounded 7. faded
%  % Format of text header
%  headerborder=open,%At which sides of the text box headers should we draw a border. Possible values are:
%		    %1. none 2. closed 3. open
%  headershape=roundedright,
%  headershade=shade-tb, %1. plain 2. shade-lr 3. shade-tb 4. shade-tb-inverse
%  boxshade=shade-lr,
%  background=shade-tb,
%==========původní ===============
%   % Format of textbox
%   textborder=roundedleft,
%   % Format of text header
%   headerborder=open,
%   headershape=roundedright,
%   headershade=plain,
%   boxshade=plain,
%   background=plain,
% zbytek
  headerfont=\small\textsf, %Sans Serif
%   headerheight=0.12\textheight,%Height of the main poster header (not of the headers of the text boxes).
  headerheight=0.075\textheight,%Height of the main poster header (not of the headers of the text boxes).
%  eyecatcher=yes,
%   linewidth=2pt
  linewidth=2pt
  }%
  %
  %HEADER
  % Eye Catcher
  {\includegraphics[width=0.1em,natwidth=0.1in,natheight=0.1in]{obrazky/golem.pdf}}
  % Title
  {\sc\huge \mbox{Tokamak GOLEM for fusion education - chapter 12}}
  % Authors
  {\normalsize \underline{P. Macha}$^{1,2}$, K. Hromasova$^{1,2}$, D. Kropackova$^{1}$, M. Lauerova$^{3}$, A. Socha$^{4}$, J. Malinak$^{1}$, D. Cipciar$^{5}$, \\ J. Cecrdle$^{1}$, V. Svoboda$^{1}$, J. Stockel$^{2}$, J. Adamek$^{2}$,  F. Papousek$^{1}´$ , L. Lobko$^{1}$ \\
    {\small $^1$ \textit{Faculty of Nuclear Sciences and Physical Engineering CTU in Prague, Czech Rep.},
$^2$ \textit{Institute of Plasma Physics AS CR, Prague, Czech Rep.},
$^{3}$ \textit{Gymnazium Nad Aleji 1952, Praha, Czech Rep.},
$^{4}$ \textit{Gymnazium a Strední odborna skola Cihelni 410, Frydek-Mistek, Czech Rep.},
$^{5}$ \textit{Faculty of Science, Masaryk University, Brno, Czech Rep.}
}%
  }

{
	%\makebox[8em][r]{
%		\begin{minipage}{8em}
%			\includegraphics[width=6em,natwidth=1235,natheight=1079]{obrazky/fjfi.png}
%			\\~\\
%			\includegraphics[width=6em,natwidth=400,natheight=173]{obrazky/ipp.png}
%		\end{minipage}
%	}
}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Now define the boxes that make up the poster
%%%---------------------------------------------------------------------------
%%% Each box has a name and can be placed absolutely or relatively.
%%% The only inconvenience is that you can only specify a relative position 
%%% towards an already declared box. So if you have a box attached to the 
%%% bottom, one to the top and a third one which should be in between, you 
%%% have to specify the top and bottom boxes before you specify the middle 
%%% box.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \def\halfImage#1#2{
    \begin{minipage}{0.49\textwidth}
    \includegraphics[width=\textwidth]{#1}
    {\it #2}
    \end{minipage}}
  \def\thirdImage#1#2{
    \begin{minipage}{0.31\textwidth}
    \includegraphics[width=\textwidth]{#1}
    {\it #2}
    \end{minipage}}
  \def\half#1{
    \begin{minipage}{0.49\textwidth}
    #1
    \end{minipage}}
  \def\third#1{
    \begin{minipage}{0.32\textwidth}
    #1
    \end{minipage}}
    
    
    
\headerbox{The GOLEM tokamak}{name=golem,column=0,row=0}
{
  \begin{center}
  \includegraphics[width=0.5\textwidth]{obrazky/tokamak.jpg}
  \end{center}\vspace{-8pt}
%   \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt}
\begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
\compresslist
\scriptsize
    \im Parameters: $B_{\mathrm{t}} < 0.5$ T, $I_{\mathrm{p}} < 8$ kA, pulse length $< 15$ ms.
    \im An educational device for domestic as well as for foreign students via remote participation/handling [1], [2].
%     \im Tokamak physics, technology and operation can be studied by the future fusion specialists
	\im Students become familiar with probe measurements, data analysis and basic tokamak diagnostics.
    \im Subject of Bachelor's degree projects and Master's degree theses. 
    %\im At present used in an experimental laboratory course in the basic physics curriculum. %Students engage in tokamak operation, probe measurements and analysis of measurements with basic tokamak diagnostics. Students become familiar with probe measurements, data analysis and basic tokamak diagnostics.
  \end{list}
% \ei
 }


\headerbox{External plasma stabilization}{name=break,column=0,row=0, span=1, below=golem}
{
    \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist    
    \scriptsize
      \im 2 external windings generating predefined poloidal magnetic field used for plasma control (horizontal, vertical).
	  \im Plasma position is determined by Mirnov coils.
      \im The influence of the horizontal mg. field on the discharge duration is shown.    
    \end{list}
\begin{center}
\includegraphics[height=0.525\textwidth]{new/Daniela/fig1.png}\qquad	
\end{center}\vspace{-2em}
\begin{center}
  \textit{\scriptsize Plasma vertical displacement for discharges with stabilization generating horizontal magnetic field.}
\end{center}
}


\headerbox{Long-range correlations}{name=gams,column=0,row=0, span=1, below=break}
{
    \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist    
    \scriptsize
      \im Long-range correlations studies using 2 toroidaly separated Langmuir probes with focus on GAMs.
	  \im The coherence for GAM confirmation in progress.  
    \end{list}
\begin{center}
\includegraphics[height=0.525\textwidth]{new/Filip/DRP_LP_new.pdf}\qquad	
\end{center}\vspace{-2em}
\begin{center}
  \textit{\scriptsize An example of $U_\mathrm{fl}$ signals from double rake probe and Langmuir probe.}
\end{center}
}

\headerbox{Lithization tests in vacuum tube}{name=jan,column=0,row=0, span=1, below=gams}
{
    \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist    
    \scriptsize
      \im Lithization setup tests performed in a small vacuum tube.
	  \im Several critical problems need to be handled before usage in the tokamak wall - oxidation of the metallic lithium and potential melting of electrodes.
	  \im A spectral line of neutral Li has been observed.
    \end{list}
    \begin{center}
\includegraphics[height=0.5\textwidth]{new/Honza/image2_resized.jpg}\qquad	
\end{center}\vspace{-2em}
\begin{center}
  \textit{\scriptsize Snapshot of the glow discharge with the apparent red neutral lithium line.}
\end{center}
}

\headerbox{References}{name=ref,column=0,row=0, span=1,below=jan}
{

\tiny
\vspace{0.1cm}
\begin{thebibliography}{99}
\vspace{0.1cm}
\bibitem{Svoboda}
V. Svoboda, et al., Fus. Eng. and Des. 68, 1310-1314 (2011)
\vspace{-1.5em}
\bibitem{Svoboda2}
V. Svoboda, et al., Journal of Fusion Energy volume 38, pages253–261 (2019)
\vspace{-1.5em}
\bibitem{Adamek}
J. Adamek et al 2021 Nucl. Fusion 61 036023 https://iopscience.iop.org/article/10.1088/ \\ 1741-4326/abd41d \\
\vspace{-2.5em}
\bibitem{Katka}
J. Adamek et al., Czechoslovak Journal of Physics. (2004) 54, 95–99. \\
\vspace{0cm}
\end{thebibliography}
}


\headerbox{Contact us}{name=contact,column=0,row=0, span=1,below=ref}
{\tiny
    \begin{tabular}{lr}
    %\begin{minipage}{0.6\textwidth}
    Tokamak GOLEM,
    B\v rehov\' a 7, Prague,
    Czech Republic\\
    {\bf \texttt{ golem.fjfi.cvut.cz}}\\
    svoboda@fjfi.cvut.cz

    %\end{minipage}
    \end{tabular}
}


%\headerbox{Acknowledgment}{name=acknowledgment,column=0,row=0, %span=1,below=contact}
%{
%\tiny
%  This work was supported by the Grant Agency of the Czech Technical %University in Prague, grant No. SGS19/180/OHK4/3T/14.
%  \vspace{0px}
%}




\headerbox{Fast ion temperature measurement using swept ball-pen probe}{name=ballpen,column=1,row=0, span=2}
{
  \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist  
  \scriptsize
	\im Ion temperature is measured with 5 $\mu s$ temporal resolution based on the measurements of the electron branch of a ball-pen probe (BPP) IV characteristics [3].
	\im The probe collector is biased with a voltage swept between -30V to +130 V at a frequency
of 100 kHz.
	\im The $T_\mathrm{i}$ is obtained from $I(V) = I_\mathrm{sat}^+ \cdot \left( \exp (\alpha_\mathrm{BPP}) \cdot \left[ 1+K \cdot \left( V - \Phi \right) \right] - \exp \left( \frac{\Phi - V}{T_\mathrm{i}} \right) \right)$,  $\alpha = \ln \frac{I^{-}_\mathrm{sat}}{I^{+}_\mathrm{sat}} = 0.25 \pm 0.09$ ($B_\mathrm{t}>0.22$ T).
	\im Cut-off fitting technique is applied to all the IV characteristics. 	
	\im Fluctuations of the ion temperature ranging between 5 eV up to
40 eV reveal the turbulent behavior of the edge plasma.	
	\im NON-Gaussian shaped histograms of $T_\mathrm{e}$ and $T_\mathrm{e}$ are observed with a peak at low temperature and a tail towards high temperatures.
  \end{list}
 \vspace{-0.75em}
\begin{center}
  \includegraphics[height=0.225\textwidth]{new/Dario/2150Example_full10.1507958_shot36709.png}\qquad	
  \hspace{-0.25cm}
    \includegraphics[height=0.225\textwidth]{new/Dario/Ti_Te_2Discharges65mm_36709.png}
    \hspace{0.25cm}
    \includegraphics[height=0.225\textwidth]{new/Dario/Histogram_CONF.png}
    %\vspace{8pt}
    \newline
	\textit{\scriptsize  Cut-off technique. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Temporal evolution of $T_\mathrm{i}$ and $T_\mathrm{e}$. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  Histograms of $T_\mathrm{i}$ and $T_\mathrm{e}$. \ \ \ \ \ \ \ \ \ \ \ \ }
	\end{center}
	}


\headerbox{Electron temperature measurements using rail probe}{name=DRP,column=1,row=0, span=2,below=ballpen}
{
	\begin{minipage}[t]{0.45\textwidth}	
	\vspace{-4.66cm}
	%\begin{multicols}{2}
	\begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist	
	\scriptsize
		\im The rail probe concept can sustain exceptionally high heat flux and reduce the sheath expansion effect.
		\im A probe head consists of a rail probe (RP, length = 40 mm, wide = 2 mm), Langmuir probe (LP, length 1.5 mm, diameter 1 mm), and ball-pen probe (BPP) [4] has been designed
		\im Special manipulator with changable inclination to $B_\mathrm{t}$ within $\pm 10 ^\circ$ has been installed.		
		\im Electron temperature is measured using a swept Langmuir and rail probe (f = 5 kHz) and a floating ball-pen probe.		
		\im Capability of RP to reduce the sheath expansion effect was confirmed.		
		\im Good agreement between LP, RP and BPP electron temperature measurements for large magnetic field.
	\end{list}

	\begin{center}
	\textit{\scriptsize Left) Comparison of $T_\mathrm{e}$ measured by BPP, LP and RP. Right) Diagram of the combined probe head.}
	\end{center}
	%\vspace{-0.75em}
	%\columnbreak
\end{minipage}
\begin{minipage}[t]{0.54\textwidth}
\begin{center}
\hspace{3em}
\hspace{-1.22cm}
\includegraphics[width=0.56\textwidth]{new/J_Malinak/FIG2.png}
\includegraphics[width=0.43\textwidth]{new/J_Malinak/FIG_NEW.png}  
 \end{center}
\end{minipage}
%\end{multicols}
  %\includegraphics[height=0.4\textwidth, width=0.5\textwidth]{obrazky/stredni_hodnoty_V_float.pdf} 
  %\vspace{-8pt}	
  %\begin{center}
%	\textit{Mean value of $V_{float}$ from different shots with AC bias applied - grey rectangle, compared to shot without bias.}  
 % \end{center}

}



\headerbox{Measurements of HXR radiation}{name=RE,column=1,row=0, span=2,below=DRP}
{
	%\begin{multicols}{2}
  \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist  
  \scriptsize
\im Scintillation detectors were used for HXR spectrometry.
\im Two problems occured: 
\begin{itemize}
  \item Standard photomultiplier tubes of scintillation detectors can not withstand intensive HXR fluxes (NaI(Tl) detector drops around 8 ms).
 \item Piled-up areas of signal - still too high HXR fluxes
\end{itemize}
\im Optimal setup must be found by ensuring sufficient lead shielding and the distance from tokamak.
  \end{list}

%\columnbreak  
  \vspace{-0.75em}
	    \begin{center}
  \includegraphics[height=0.25\textwidth]{new/Lukas_Lobko/ffig1.png}	
    \includegraphics[height=0.25\textwidth]{new/Lukas_Lobko/ffig2.png}\end{center}\vspace{-8pt}	

%\end{multicols}
\vspace{-0.75em}
  \begin{center}
  \textit{ \scriptsize Comparison of HXR signals from 4 different scintillation detectors. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Comparison of piled-up signals and individual peaks.}
  \end{center}
}


\headerbox{Turbulent structures}{name=katka1,column=1,row=0, span=1,below=RE}
{
  \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist  
  \scriptsize
	\im Exchange turbulence (blob-hole pair generation and propagation) in the plasma edge enhances energy and particle losses.
	\im Double rake probe (tokamak bottom port) measured $I_\mathrm{sat}$ at 
	${r = 37-90}$ mm (limiter at $r = 85$ mm).
	\im $I_\mathrm{sat}$ histograms found asymmetric with positive skewness indicates the presence of blobs.
	\im Skewness seems to decrease to negative values at $r = 40$ mm, possible location of the blob birth zone.
  \end{list}
  \vspace{-0.75em}
	    \begin{center}
\includegraphics[height=0.5\textwidth]{new/Ales/edited_picture3.png}\qquad	
\end{center}\vspace{-2em}
\begin{center}
  \textit{\scriptsize Radial profile of ion saturated current skewness. Positive values indicate the presence of blobs throughout the investigated region.}
\end{center}
}

\headerbox{Electron temperature measurements}{name=katka2,column=2,row=0, span=1,below=RE}
{
  \begin{list}{\labelitemi}{\itemsep=-2pt \topsep=-2pt \leftmargin=12pt}
    \compresslist  
  \scriptsize
	\im Swept Langmuir probe – verified but complicated and time-consuming.
	\im Combined method (floating ball-pen and Langmuir probe) – straightforward and high time resolution, but rather new.
	\im It was verified that both methods give the same results.
	\im We suggest that the combined method is suitable for measuring the edge plasma $T_\mathrm{e}$.
  \end{list}
  \vspace{-0.75em}
	    \begin{center}
\includegraphics[height=0.535\textwidth]{new/Martina/ffig.png}\qquad	
\end{center}\vspace{-2em}
\begin{center}
  \textit{\scriptsize Time evolution of $T_\mathrm{e}$ in two identical GOLEM discharges, showing good correspondence between the two methods ($\#35729-\#35791$).}
\end{center}
}

\headerbox{Acknowledgment}{name=acknowledgment,column=1,row=0, span=2,below=katka1}
{
\scriptsize
  This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS19/180/OHK4/3T/14.
  \vspace{0px}
}

\end{poster}
\end{document}