Presentations/Seminars/IBA@COMPASS.cz/Develop/X/fusion.tex

\def\DTreaction{$$\bf{ ^2_1D_{(10keV)}+^3_1T_{(10keV)}\Rightarrow ^4_2He_{(3.5MeV)}+n_{(14.1MeV)}}$$}


\def\harnessenergysun{
\begin{frame} \frametitle{Harnessing the Sun's energy}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.5\textwidth]{figs/fusion/sun}
  \end{figure}
\DTreaction
\begin{center}
$\longrightarrow$ Heat \& Confine  $\longleftarrow$
\end{center}
\end{frame}}


\def\annualreq{
\begin{frame} \frametitle{The 1GW (approx. Prague) annual power requirement}
  \begin{figure}[t]
    \centering
    \includegraphics[width=\textwidth]{figs/fusion/annualreq}
  \end{figure}
\end{frame}}

\def\likechargesrepeal{
\begin{frame} \frametitle{Problem: Like charges repel}
\DTreaction
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.8\textwidth]{figs/fusion/repeal.png}
  \end{figure}
\end{frame}}


\def\threewaytoconfine{\begin{frame} \frametitle{Three ways to confine plasma}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.8\textwidth]{figs/fusion/udrzeni.png}
  \end{figure}
\end{frame}}

\def\tokamaksketch{\begin{frame} \frametitle{Magnetic confinement - Tokamak}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.8\textwidth]{figs/fusion/tokamak}
  \end{figure}
\end{frame}}

\def\engineerinschemeGolem{\begin{frame} \frametitle{Engineering scheme of the GOLEM tokamak}
  \begin{figure}[t]
    \centering
    \includegraphics[width=\textwidth]{figs/Golem/castor_nodes.jpg}
  \end{figure}
\end{frame}}


\def\GolemDAS{\begin{frame} \frametitle{Basic plasma diagnostics in tokamak GOLEM}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.9\textwidth]{figs/Golem/das}
  \end{figure}
\end{frame}}

\def\GolemDASresultsWithoutGas{\begin{frame} \frametitle{DAS without working gas (no discharge)}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.5\textwidth]{figs/fusion/graphpres1}
  \end{figure}
\end{frame}}


\def\GolemDASresultsWithPlasma{\begin{frame} \frametitle{DAS plasma discharge with working gas}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.5\textwidth]{figs/fusion/graphpres}
  \end{figure}
\end{frame}}


\def\JETdischarge{\begin{frame} \frametitle{Plasma discharge in tokamak}
  \begin{figure}[t]
    \centering
    \includegraphics[width=\textwidth]{figs/fusion/jetnapul}
  \end{figure}
\end{frame}}


\def\JETdiagnostics{\begin{frame} \frametitle{JET diagnostics}
  \includegraphics[width=0.95\textwidth]{figs/fusion/JETdiagn}\\
  \includegraphics[width=0.079\textwidth]{figs/fusion/murari-t}\hspace{0.01\textwidth}
  \begin{minipage}[b]{0.90\textwidth}
\renewcommand{\baselinestretch}{1}\tiny  The challenge of characterising extreme conditions of nuclear fusion plasmas both spatially and temporally has inspired JET to produce an impressive array of diagnostic techniques. Drawing from fields as diverse as neutronics, spectroscopy, lasers and microwaves, JET is a leader in the art of measurement." 
\begin{flushright}
  Andrea Murari, Task Force Leader - Diagnostics.
\end{flushright}
  \end{minipage}
\end{frame}}

\def\FutureReactor{\begin{frame} \frametitle{Future reactor}
  \begin{figure}[t]
    \centering
    \includegraphics[width=\textwidth]{figs/fusion/reactor}
  \end{figure}
\end{frame}}

\def\JETsketch{\begin{frame} \frametitle{JET}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.7\textwidth]{figs/fusion/jet}
  \end{figure}
\end{frame}}

\def\ITERsketch{\begin{frame} \frametitle{ITER}
  \begin{figure}[t]
    \centering
    \includegraphics[width=0.7\textwidth]{figs/fusion/iter}
  \end{figure}
\end{frame}}