root/GW4reports/Depot/22Marianska.tex

\def\GW{/GW}
%\def\GW{/home/svoboda/Downloads/Marianska}
\def\visibility{true}


\input{\GW/root/GW4reports/GWlatexBeamerHead.tex}
\def\IOsection#1#2{\section{#1}#2}

\def\viz#1{#1}


%\GWinput{root/GW4reports/Templates/ContentDefinitions/HideSubsections/latexsrc.page}



\usepackage[
%backend=biber,
backend=bibtex,
style=alphabetic,
sorting=ynt
]{biblatex}

\addbibresource{\GW/root/bibtex/golem}

\AtBeginSection[]
{
  \begin{frame}
      \frametitle{Outline}
      \tableofcontents[currentsection]
  \end{frame}
}

\AtBeginSubsection[]
{
  \begin{frame}
      \frametitle{Outline}
      \tableofcontents[currentsection,currentsubsection]
  \end{frame}
}

\begin{document}

\title{Mari\'{a}nsk\'a 2022}
\date{}
\author{Vojt\v{e}ch Svoboda }
\slide{Golem \#14 - from \#34490 to \#37805}{
\titlepage\centering
\vspace{-2cm}
}


\section{Introduction}



\begin{frame} \frametitle{Forecast 2021}
\def\cvd{\no{\#C19}}
\begin{itemize}
\item The Night of Scientists V.  \cvd 
\item FUMTRAIC VI \yes, SCIWTRAIC@GOLEM VIII \cvd, HUNTRAIC VII \yes
\item GOMTRAIC III (5 days)! \cvd
\item Bachelor thesis ?
\item Diploma thesis IV cont.
\item papers in FUSENGDES, AJP .. ?
\item TRAICS: Eindhoven, Bangkog \no{?}, Torino, Moscow, 
\item Runaways intensive studies (JČ, postdoc, GACR grant, Valérie, )
\item Edge Plasma intensive studies (KJ, PM: TunnelP)
\im End of the reconstruction ... start to exploit the facility.
\end{itemize}
\end{frame}


\def\LOCFigSlide#1#2#3{\begin{frame}\frametitle{#1}
\begin{center}
\begin{figure}[ht]
\includegraphics[width=#2\tw]{figs/#3}
\end{figure}
\end{center}
\end{frame}}

\def\reference#1#2{\flushright #1 \nocite{#2}}

\def\LOCFigSlideWithRef#1#2#3#4#5{\begin{frame}\frametitle{#1}
\begin{center}
\begin{figure}[ht]
\includegraphics[width=#2\tw]{figs/#3}
\end{figure}
\end{center}
\reference{#4}{#5}
%\flushright #4 \cite{#5}
%\printbibliography[keyword=#4]
\end{frame}}

\def\LOCFigSlideWithURL#1#2#3#4{\begin{frame}\frametitle{#1}
\begin{center}
\begin{figure}[ht]
\includegraphics[width=#2\tw]{figs/#3}
\end{figure}
\end{center}
\url{#4}
\end{frame}}

\section{Introduction}
\FigSlide{Honza}{0.9}{/Staff/Employees/HonzSt/PG/cimg8418.jpg}
\FigSlide{South 01/2022}{0.9}{/Chronicle/PhotoGallery/South/0122.JPG}
\FigSlide{North 01/2022}{0.9}{/Chronicle/PhotoGallery/North/0122.JPG}



\section{Current scientific topics}

\viz{
\subsection{Edge plasma studies}
\subsubsection{Probes: BPP + Lang probes}
\LOCFigSlide{Dario Cipciar (Jiří Adámek): Swept BPP probe. MSc project. 2021}{0.6}{PetiProbe}
\LOCFigSlide{Dario Cipciar(Jiří Adámek): Swept BPP probe:  complex set-up}{0.55}{SweptBPPprobeSetup}
\LOCFigSlide{Dario Cipciar(Jiří Adámek): Swept BPP probe:  Oscilloscope screenshot}{0.95}{SweptBPPprobeScope36707}
\LOCFigSlideWithRef{Fast ion temperature measurement using swept ball-pen probe. MSc thesis. 2021}{1}{SweptBPPExcerptEPS2021}{Macha, P., Cipciar, D. \& Adámek, J. et al. @EPS 2021}{MachaEPS21}
\LOCFigSlideWithRef{\small Martina Lauerová (Kateřina Hromasová). Electron temperature measurements using Lang and BPP probes. SOČ project 2021}{0.5}{ComparisonProbeMethodsExerptEPS2021}{Macha, P., Lauerová, M.. \& Hromasová, K. et al. @EPS 2021}{MachaEPS21}
\LOCFigSlideWithRef{Aleš Socha (Kateřina Hromasová), Turbulent structuresusing using Double rake probe. SOČ project 2021}{0.5}{TurbulentStructuresExcerptEPS2021.png}{Macha, P., Socha, A.. \& Hromasová, K. et al. @EPS 2021}{MachaEPS21}
\subsection{Probes: Rail probe}
\LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe. BSc project. 2021}{1}{RailProbeInTokamak}
\LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe:  complex set-up}{0.55}{RailProbeSetup}
\LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe:  Oscilloscope screenshot}{0.95}{SweptRailprobeScope37068.png}
\LOCFigSlideWithRef{Electron temperature measurements using rail probe}{1}{RailProbeExcerptEPS2021}{Macha, P., Malinak, J. \& Adámek, J. et al. @EPS 2021}{MachaEPS21}
\subsection{Biasing experiments}
\LOCFigSlide{Sasha Melnikov \& students. Biasing experiment. April, 2021}{0.5}{BiasingElectrode.jpg}
\LOCFigSlide{Biasing electrode}{1}{BiasingProbe.jpg}
\LOCFigSlide{Biasing electrode with Double rake probe in tokamak}{0.6}{BiasingPlusDRP_.jpg}
}

\viz{ 
\subsection{Run Away Electrons}
\subsubsection{Diagnostics (CAAS project)}
\LOCFigSlide{\small Lukáš Lobko (Jan Čeřovský, Ondřej Ficker): Měření ubíhajících elektronů na tokamaku GOLEM prostřednictvím scintilačních detektorů. Lab. work. 2021}{1}{HXRScintprobes_.jpg}
\LOCFigSlideWithRef{Measurements of HXR radiation}{1}{HXRmeasurementExcerptEPS2021}{Macha, P., Lobko, L. et al. @EPS 2021}{MachaEPS21}
\LOCFigSlide{Čeřovský, J. et al. Progress in HXR diagnostics at GOLEM and COMPASS tokamaks}{1}{ECPD21.png}
\subsubsection{Physics}
\slide{Physics}{-}
\subsection{Others}
\subsubsection{Breakdown studies}
\FigSlideWithRef{Y. Siusko et al. Breakdown phase in the golem tokamak and its impact on plasma performance}{0.6}{Presentations/Journals/UJP.ua/20/Fig10}{Y. Siusko et al. Ukrainian Journal of Physics 66.3 (2021), pp. 231–239. }{Siusko_2021}
\FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.5}{/Presentations/Journals/PAST.ru/21/Fig6.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, 
\subsubsection{Magnetohydrodynamic studies}
\FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.8}{/Presentations/Journals/JPCS/21/Fig1.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, 
\FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.8}{/Presentations/Journals/PAST.ru/21/24a26a.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, 
\FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{0.8}{/Presentations/Journals/JPCS/21/Fig1.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref 
\FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{1}{/Presentations/Journals/JPCS/21/Fig5.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref 
}

\vizon{
\section{Technology improvements}
\subsection{Plasma position Stabilization}
\GWis{/Infrastructure/Stabilization/Slides/FeedbackSetup}
\FigSlide{Martin Humpolec (Daniela Kropáčková). External plasma stabilization. SOČ 2022}{0.55}{/Infrastructure/Stabilization/PG/KepcoAmplifiers.JPG}
\FigSlide{11/21 Martin Humpolec (štěstí? náhoda?)}{0.9}{/Infrastructure/Stabilization/Slides/Achievements/1221_MH_LongDirtyPlasma/Comparison.png}
\FigSlideWithURL{01/22 Martin Humpolec \& Daniela Kropáčková: commissioning }{0.9}{/Infrastructure/Stabilization/Slides/Achievements/0122_MH_DK_Commissioning/ShotsOfTheDay.png}{http://golem.fjfi.cvut.cz/shots/37895/Analysis/Homepage/psql/ShotsOfTheDay.php}
}

\viz{
\section{Diagnostics improvements}
\FigSlide{Fast cameras 2 tomography (Jakub \& Jakub)}{0.9}{/Diagnostics/Radiation/FastCameras/FastCam MiniUX/PG/0122.JPG}
\LOCFigSlide{Bedna šampaňského: vyčuchání a znásilnění komunikace}{0.9}{PFV}
\FigSlide{Calorimetry (J. Caloud)}{0.9}{/Diagnostics/ParticleFlux/Calorimeter/PG/DSCN1864.JPG}
\FigSlide{Motor driven Z-angle manipulator}{0.6}{/HW/Vacuum/Manipulators/Pfeiffer/Motor-Controll/PG/DSCN1865.JPG}
\FigSlide{Plug in modules}{0.9}{/HW/LaboratoryInstruments/PluginModules/PG/Old_New.png}
}

\vizon{
\section{Education}
%\subsection{Undergraduate Projects}
\slide{Undergraduate Projects}{
\bi
\im Adéla Kubincová (Ondřej Kudláček). Sofistikované metody real-time řízeni tokamakových procesů. BP 2021.
\im Štěpán Malec (Vladimír Linhart). HXR detection with Timepix3. VU 2021.
\im Marek Tunkl (Michal Marcišovský?). Strip detector. DP 2021.
\ei
}
%\subsection{Postrgraduate Projects}
\slide{Postgraduate Projects}{
\bi
\im Petr Mácha. Studium okrajového plazmatu v tokamacích pomocí pokročilých elektrických sond. DP 2020.
\im Sergei Kulkov. Timepix3 for HXR detection. PhD 2020.
\im Vladimir Ivanov. RE studies with ECRH radiometer.
\ei
}
}

\viz{
\subsection{High school students}
\LOCFigSlide{Matyáš Horák (Katka Hromasová): Profil elektronové teploty v komoře tokamaku}{1}{SOC21_MatyasHorak}
\LOCFigSlide{Aleš Socha (Katka Hromasová): Poloha zóny vytváření turbulentních struktur v okrajovém plazmatu tokamaku}{1}{SOC21_AlesSocha}
\LOCFigSlide{Martina Lauerová (Katka Hromasová): Měření elektronové teploty na tokamaku GOLEM elektrickými sondami}{1}{SOC21_MartinaLauerova}
}



%\printbibliography[keyword=MachaEPS19]



\section{Public relations}
\GWFigSlide{11/21 Guido Lange}{0.9}{Chronicle/SpecialGuests/1121GuidoLange.JPG}

\section{Production}
\LOCFigSlide{Himmel, M. Průjezd, verze 2. 2020.}{0.9}{PrujezdNavrh}
\GWFigSlide{Kauza průjezd}{0.6}{Production/Events/19Prujezd/PG/20200903_173829_s_portr}

\section{Publications}
\FigSlideWithRef{Y. Siusko et al. Breakdown phase in the golem tokamak and its impact on plasma performance}{0.6}{Presentations/Journals/UJP.ua/20/Screenshot}{Y. Siusko et al. In Ukrainian Journal of Physics 66.3 (2021), pp. 231–239. }{Siusko_2021}
\FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.5}{/Presentations/Journals/PAST.ru/21/Screenshot.png}{G.A. Sarancha et al. In PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, FigPath, TextRef, Ref 
\FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{0.8}{/Presentations/Journals/JPCS/21/Screenshot.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref 
\FigSlideWithRef{P. Mácha et al. Tokamak GOLEM for fusion education - chapter 12}{0.8}{/Presentations/Conferences/EPS/47th_online_2021/Education/Screenshot}{Europhysics conference abstracts. 2021, P4.1028}{MachaEPS21} %Title, Size, FigPath, TextRef, Ref 
\FigSlideWithRef{S Kulkov et al. Runaway electron study at the COMPASS tokamak using the Timepix3-based silicon pixel detector with SPIDR 10 GBps readout}{0.8}{/Presentations/Conferences/EPS/47th_online_2021/Runaways/Screenshot.png}{Europhysics conference abstracts. 2021, P3.1006}{KulkovEPS21} %Title, Size, FigPath, TextRef, Ref 

\section{Miscellaneous}

\viz{
\section{Plans}
\slide{Generally}{
\bi
\im After the COMPASS shutdown ... the only tokamak far wide.
\im Fast spectrometry on specific lines.
\ei
}
\LOCFigSlide{Jan Buryanec (Vojtěch Svoboda): Plasma current control}{0.8}{FlatTop}
\FigSlide{Gabo Vondrášek. Maxi přepínač}{0.6}{/HW/Specials/DiagnosticSwitch/PG/DSCN1871.JPG}
\FigSlide{Martin Himmel \& Honza Buryanec: LED experimental set-up}{0.8}{/Tokamak/ExperimentalSetup/LEDmodel/PG/2017-12-21_22-29-23.jpg}
\LOCFigSlide{Oprava interferometru (na dobré cestě)}{0.9}{Interferometr.jpg}
\LOCFigSlideWithURL{Free post discharge analysis script upload/access for trained students }{0.9}{DataPlotting.png}{http://golem.fjfi.cvut.cz/shots/36443/}
\LOCFigSlide{Start to exploit all the stuff}{1}{StartScience.png}
\slide{To tu ještě nebylo ...}{Nakonec, je tu ještě myšlenka, pokud by byla možnost na tokamak GOLEM dostat trochu deuteria, mohli bychom s pomocí NuDET detektoru ověřit přítomnost energií ubíhajících elektronů vyšších než 2,2 MeV. Totiž, HXR fotony o energii 2,2 MeV a vyšší dokáží iniciovat fotojaderné reakce s jádry deuteria za vzniku neutronů, které se dají NuDET detektorem lehce změřit včetně separace od HXR fotonů. \reference{Lobko, L. Lab. work. 2021}{PRPLLobko21}}
}

\section{Acknowledgments}

%\LOCFigSlide{Petr Mácha}{0.9}{PM_statnice}
%\LOCFigSlide{Katka Hromasová}{0.9}{KatkaPrujezd}

\input{figs/ack21}\GWslide

\GWinput{root/GW4reports/Templates/References/latexsrcbiblatex.page}

\end{document}